
Incremental Event Calculus for Run-Time Reasoning∗ (Extended Abstract)

Efthimis Tsilionis1,2 , Alexander Artikis3,2 and Georgios Paliouras2
1Department of Informatics & Telecommunications, National and Kapodistrian University of Athens,

Greece
2Institute of Informatics & Telecommunications, NCSR “Demokritos”, Greece

3Department of Maritime Studies, University of Piraeus, Greece
eftsilio@{di.uoa.gr, iit.demokritos.gr}, a.artikis@unipi.gr, paliourg@iit.demokritos.gr

Abstract
We present a system for online, incremental com-
posite event recognition. In streaming environ-
ments, the usual case is for data to arrive with a
(variable) delay from, and to be revised by, the un-
derlying sources. We propose RTECinc , an incre-
mental version of RTEC, a composite event recog-
nition engine with formal, declarative semantics,
that has been shown to scale to several real-world
data streams. RTEC deals with delayed arrival and
revision of events by computing all queries from
scratch. This is often inefficient since it results in
redundant computations. Instead, RTECinc deals
with delays and revisions in a more efficient way,
by updating only the affected queries. We com-
pare RTECinc and RTEC experimentally using
real-world and synthetic datasets. The results are
compatible with our complexity analysis and show
that RTECinc outperforms RTEC in many practi-
cal cases.

1 Introduction
Streaming environments combine simple, derived events
(SDEs) in order to recognise in real-time composite events
(CEs) that satisfy a given pattern. These patterns are col-
lections of simpler events, which are subject to tempo-
ral and atemporal constraints, and may be combined with
static background knowledge [Cugola and Margara, 2012;
Alevizos et al., 2017; Giatrakos et al., 2020].

The Event Calculus for Run-Time Reasoning (RTEC)
[Artikis et al., 2015] is a composite event recognition (CER)
system that has been tested and proven efficient in numerous
applications, such as urban traffic management, public space
surveillance and maritime situational awareness [Patroumpas
et al., 2017]. RTEC is a dialect of the Event Calculus, which
is a logic programming formalism for representing and rea-
soning about events and their effects [Kowalski and Sergot,
1986]. Moreover, RTEC includes various optimisation tech-
niques for computing the intervals of CEs in a data stream.
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In real-life streaming tasks, the usual case is for the input
events to arrive with variable delays to the CER system. In
the maritime domain, for example, delays occur in the in-
put events when the stations (terrestrial and satellite) that col-
lect the position signals of vessels have to deal with a great
amount of messages. Furthermore, revisions or retractions
may be applied to input events; e.g. the start or end time of an
event may be wrong and subsequently corrected by the event
source.

Delays and retractions in the input stream are being han-
dled by RTEC by means of windowing. RTEC employs over-
lapping windows, in order to ‘wait’ for delayed events and
retractions. A drawback is that CE intervals within a window
are computed from scratch, without considering the CE inter-
vals of the previous overlapping windows. This way the in-
tervals of a CE will be re-calculated even if delays and retrac-
tions do not have an effect on them. In [Tsilionis et al., 2022],
we present RTECinc , an incremental version of RTEC, that
overcomes this type of inefficiency. In particular, our contri-
butions are the following:

• We present an incremental algorithm for all types of CEs
of the language of RTEC.

• We provide a detailed theoretical evaluation of
RTECinc and show the conditions in which it achieves
lower computational complexity compared to RTEC.

• We compare RTECinc and RTEC experimentally using
real-world and synthetic datasets from different appli-
cation domains. The results are compatible with our
complexity analysis and show that RTECinc is prefer-
able over RTEC in many practical cases. The code of
RTECinc is publicly available1. Moreover, some of
the employed datasets are available, allowing the repro-
ducibility of our results.

The structure of this paper is as follows: Section 2 sum-
marises the functionality of RTEC. Section 3 outlines the de-
tails of the incremental procedure. Finally, Section 4 sum-
marises our empirical analysis.

1https://github.com/eftsilio/Incremental RTEC
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2 Background: Run-Time Event Calculus
2.1 Language & Semantics
The time model used by RTEC is linear and includes inte-
ger time-points [Artikis et al., 2015]. If F is a fluent —
a property that can have different values at different points
in time — the term F=V denotes that fluent F has value
V . holdsAt(F=V, T ) is a predicate representing that fluent
F has value V at time-point T . holdsFor(F=V, I) repre-
sents that I is the list of maximal intervals for which F=V
holds continuously. holdsAt and holdsFor are defined in such
a way that, for any fluent F , holdsAt(F=V, T ) if and only
if T belongs to one of the maximal intervals of I for which
holdsFor(F=V, I).

An event description in RTEC comprises rules that express:
(a) event occurrences using the happensAt predicate, (b) the
effects of events using the initiatedAt and terminatedAt predi-
cates, (c) the values of fluents, with the use of the holdsAt and
holdsFor predicates, as well as other, possibly atemporal, pa-
rameters. Event Calculus events express instantaneous SDEs
and CEs, while fluent-value pairs express durative SDEs and
CEs. In CER, the majority of CEs are durative and, there-
fore, the task is to compute the maximal intervals for which
a fluent-value pair F=V representing a CE has a particular
value continuously. Fluents in RTEC are of two kinds: simple
and statically determined. In this paper, we restrict attention
to simple fluents.

Simple fluents are defined by means of initiatedAt and ter-
minatedAt rules. Below we present an abstract initiatedAt rule.
terminatedAt rules have a similar form.

initiatedAt(F=V, T )←
happensAt(A, T ),

holdsAt(B=VB , T ),

not happensAt(C, T ),

not holdsAt(D=VD, T ).

(1)

Rule (1) is a rule of conjunctions, meaning that all body lit-
erals should be satisfied in order for the rule to fire. not de-
notes negation by failure [Clark, 1977]. Variables start with
an upper-case letter, while predicates and constants start with
a lower-case letter. The variable T , present at the head and
all body literals, expresses that all literals are evaluated at the
same time-point. Rule (1) is satisfied at time-point T if event
A has occurred at T , there exists an interval of fluent B that
includes T , there is no occurrence of event C at T and there
is no interval of fluent D that includes T . We use the term
positive to refer to events and fluents that must occur at or in-
clude T , e.g. A and B, and the term negative to refer to events
and fluents that should not occur at or include T (symbol not),
e.g. C and D. Rules in RTEC are ‘safe’, i.e. every variable
that appears in the head of the rule or in any negative literal
in the body also appears in at least one positive literal in the
body. initiatedAt and terminatedAt rules of type (1) are not re-
stricted in the number of body literals. The only requirement
is the first body literal to be a positive happensAt predicate,
which can then be followed by a possibly empty set of posi-
tive/negative happensAt and holdsAt predicates.

RTEC utilises the time-points produced by initiatedAt and
terminatedAt rules to construct the maximal intervals, dur-

ing which a simple fluent has a particular value continu-
ously. Therefore, to compute the intervals I for which F=V ,
i.e. holdsFor(F=V, I), we first find all time-points Ts at
which F=V is initiated by using initiatedAt rules. Then, for
each Ts, we compute the first time-point Tf after Ts at which
F=V is terminated, by evaluating terminatedAt rules. This is
an implementation of the law of inertia.

CE definitions in RTEC are (locally) stratified logic pro-
grams [Przymusinski, 1987].

2.2 Operation
The CER process takes place at specified query times
q1, q2, . . . . The recognition at each qi is performed over the
SDEs that fall within a user-specified interval, the ‘working
memory’ or window ω. All SDEs outside the window are dis-
carded and not considered during recognition. This means
that at each qi CER depends only on the SDEs that took place
in the interval (qi−ω, qi]. The size of ω, as well as the tempo-
ral distance between two consecutive query times — the step
(qi−qi−1) — are user-specified. In order to deal with delays
or retractions of SDEs, the user must set ω to be longer than
the step, i.e. qi−ω < qi−1 < qi.

At each query time qi, RTEC computes from scratch and
stores the intervals of fluent-value pairs expressing CEs. Fig-
ure 1 illustrates the process of computing the initiation points
of the fluent-value pair F=V at two consecutive query times
with the use of rule (1). In this example, the window ω is
longer than the step. At the upper part of Figure 1 the up-
ward arrows represent the initiation points calculated at the
previous query time qi−1.

time

ω

qi-1

time

ω

qiqi-1

qi-1 - ω

qi  - ω

 

 

  

  

happensAt(A, T),
holdsAt(B=VB, T),
not happensAt(C, T),
not holdsAt(D=VD, T).

happensAt(A, T),
holdsAt(B=VB, T),
not happensAt(C, T),
not holdsAt(D=VD, T).

Rule (1)

Figure 1: Example of initiation point computation. The upper part
of the figure shows the initiation points of fluent-value pair F=V ,
as defined by rule (1), calculated at the previous query time qi−1,
while the bottom part shows the initiation points calculated at qi.
Dots represent event occurrences, unlabeled horizontal lines repre-
sent fluent intervals and arrows facing upwards represent initiation
points. Green dots express event instances that arrived at RTEC at qi.
Green lines express fluent intervals that were calculated at qi. Red
dots (resp. lines) express event instances (fluent intervals) that were
retracted at qi. Vertical dashed lines indicate the initiation points
that are common between the two query times.
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At the bottom part of Figure 1, we present the initiation
points computed at qi. Notice the presence of delayed arrivals
for events A and C (green dots), of a new interval computed
for fluent D (green line), of a retraction of event C (red dot),
and of an interval reduction for fluent B. The delayed arrival
of event A, along with the retraction of event C lead to a
new initiation point. Two initiation points that were present
at qi−1 are no longer present at qi.

However, three out of the four initiation points calculated
at qi are identical among the two query times (see the ver-
tical dashed lines). Although these initiation points are not
affected by delays and retractions, they still need to be re-
computed. This is unnecessary and indicates the redundant
computations of RTEC.

3 Incremental Evaluation of Simple Fluents
We present RTECinc , an extension of RTEC that includes a
process for the incremental computation of fluent-value pairs.
In this paper, we will summarise the treatment of simple flu-
ents. In what follows, we assume that windows are over-
lapping, i.e. that qi−ω < qi−1 < qi. Moreover, incre-
mental computation concerns the overlap between consecu-
tive windows, i.e. (qi−ω, qi−1]. Reasoning in (qi−1, qi] may
be performed using RTEC. The incremental evaluation com-
prises two phases: deletion and addition. During deletion,
RTECinc removes initiation and termination points, calcu-
lated at qi−1 and no longer holding at qi. In the addition
phase, RTECinc calculates new initiation and termination
points, i.e. points that were not present at qi−1. In the present
paper, we will provide only a brief description of the addition
phase. The details of both phases, as well as the treatment
of statically determined fluents, can be found in the original
paper [Tsilionis et al., 2022].

The addition phase consists of the calculation of new initi-
ation and termination points, i.e. points that were not present
at qi−1. The new time-points may belong to the overlapping
part of two consecutive windows, (qi−ω, qi−1], or to the non-
overlapping part, (qi−1, qi]. We focus on the overlapping part,
since it differentiates the method of computation of RTECinc

from that of RTEC.
Consider rule (1) again and assume that at qi−1 the rule

did not fire, but all body predicates except the first one were
satisfied at time-point T . At qi a delayed arrival of event A
at time-point T will activate the rule. Similarly, deletions of
event occurrences or fluent intervals may lead to the satisfac-
tion of a rule. For example, if rule (1) did not fire at qi−1 due
to the fact that event C occurred at T , but at qi the specific
occurrence of event C was retracted, the rule would fire.

To calculate the new initiation points, we use the delta rules
presented in (2), in the given order (termination points are
handled similarly). The superscripts correspond to the set in
which the time argument T is evaluated. In rule (2)(a), event
A is evaluated over the occurrences that arrived at RTECinc

at qi (set I+). The time-points in set I+ are examined against
all the intervals of B=VB (set IQi ) overlapping the interval
(qi−ω, qi−1]. If an interval of B=VB includes a time-point
in set I+, then this time-point should not coincide with any
occurrence of event C, and should not overlap any of the

initiatedAt(F=V, T )←[
happensAt(A, T )

]I+

,[
holdsAt(B=VB , T )

]IQi

,

not
[
happensAt(C, T )

]IQi

,

not
[
holdsAt(D=VD, T )

]IQi

.

(a)

initiatedAt(F=V, T )←[
happensAt(A, T )

]IQi\I+

,[
holdsAt(B=VB , T )

]I+

,

not
[
happensAt(C, T )

]IQi

,

not
[
holdsAt(D=VD, T )

]IQi

.

(b)

initiatedAt(F=V, T )←[
happensAt(C, T )

]I−

,[
happensAt(A, T )

]IQi\I+

,[
holdsAt(B=VB , T )

]IQi\I+

,

not
[
holdsAt(D=VD, T )

]IQi

.

(c)

initiatedAt(F=V, T )←[
happensAt(A, T )

]IQi\I+

,[
holdsAt(D=VD, T )

]I−

,[
holdsAt(B=VB , T )

]IQi\I+

,

not
[
happensAt(C, T )

]IQi ∪ I−

.

(d)

(2)
intervals of D=VD. If all of these conditions are satisfied,
then the rule gives rise to a new initiation point. Figure 2(a)
illustrates the calculation of an initiation point belonging to
(qi−ω, qi−1] by means of rule (2)(a).

Rule (2)(b) is similar to (2)(a), but has a small modification
which ensures that derivations are not repeated. In this rule,
only the intervals computed at qi are considered for B=VB

(set I+). However, event A is matched against the occur-
rences at qi, excluding the occurrences that were inserted to
the system at qi (set IQi \ I+). This means that we exam-
ine only time-points falling in (qi−ω, qi−1] and present in
the system from the previous query time qi−1, excluding the
ones, if any, that were retracted at qi. This is important in
order to avoid repeating evaluations. Figure 2(b) shows the
calculation of an initiation point belonging to (qi−ω, qi−1]
by using rule (2)(b).

Rule (2)(c) examines if a retracted occurrence of event
C (set I−) can lead to a new initiation point. Recall from
rule (1) that we demand the absence of event C, in order for
the rule to be satisfied. Thus, if at qi some occurrences of
event C are removed, an initiation point of F=V could have
been calculated. Notice that the conditions of the rule have
been re-ordered for performance reasons. Figure 2(c) shows
this process by using rule (2)(c).

Rule (2)(d) examines the deleted intervals of D=VD. We
employ the same optimisations as in the previous two rules,
but we also introduce a new one concerning negative literals.
In rule (2)(c) we examined event C over the time-points in
I−. If any of these points led to new initiation points, then
these derivations should not be repeated in rule (2)(d). In
order to achieve this, we evaluate event C negatively over all
of its occurrences at qi, including the deleted ones (set IQi ∪
I−). In other words, we take into account the occurrences in
I−, which are not present at qi, in order to avoid repeating
derivations. Figure 2(d) shows the calculation of an initiation
point belonging to (qi−ω, qi−1] by means of rule (2)(d).

In each of the four delta rules, a body literal is evaluated
over the set I+ or I−. In practice these sets are small, com-
pared to the set of all event occurrences and fluent intervals,
i.e. IQi . By using these small sets, the evaluation is faster and
the performance is improved compared to the re-computation
from scratch performed by RTEC. The optimised evaluation
sets of the delta rules also ensure that a new initiation point
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not [happensAt(C, T)] I       U  I    .
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Figure 2: Illustration of the addition phase. Dots represent event oc-
currences, unlabeled horizontal lines represent fluents intervals and
arrows facing upwards represent initiation points. The black color
signifies event occurrences and fluent intervals present both at qi−1

and qi, the green color signifies events arriving at, and fluent inter-
vals computed at qi, while the red color signifies event occurrences
and fluent intervals retracted at qi. Enlarged dots and lines denote
participation in the addition phase. The vertical dashed lines now
indicate the time-points and intervals that give rise to a new initia-
tion point. Each of the four illustrations corresponds to a delta rule
of rule-set (2). The non-overlapping part of the two query times,
(qi−1, qi], is greyed out in all illustrations.

can only be produced by one of the four rules.

4 Empirical Analysis
We summarise the experimental comparison of RTEC and
RTECinc in the field of maritime monitoring. Maritime sit-
uational awareness concerns the recognition of compostite
maritime events, such as ship-to-ship transfer, fishing and
dangerous sailing, and is typically achieved by monitoring
the messages vessels emit while sailing at sea. Terrestrial and
satellite stations collect and forward the messages emitted by
the vessels to the CER system. The stations have to deal with
a large number of messages that lead to significant delays.
The CER system must handle in an efficient way the delayed

arrival of events in order to minimise latency. We present
results from two datasets, a publicly available dataset con-
cerning vessels sailing in the Atlantic Ocean around the port
of Brest, France, and a dataset concerning vessels sailing in
the European seas. The delays in the first dataset cannot be
recovered and an approach of artificially injecting delays was
adopted. We show the results of the experiment where 40% of
the total events are delayed. In the second dataset we are able
to retain the natural delays. The full experimental evaluation
can be found in the original paper [Tsilionis et al., 2022].

Figure 3 presents the average recognition times for the syn-
thetic (a) and natural delays dataset (b). In Figure 3(a) the
sliding window varies from 12 to 168 hours, while the slide
step is constant and equal to 12 hours. In Figure 3(b), the win-
dow varies from 1 to 8 hours and the step is equal to 1 hour.
In both figures, we state for each window the average number
of SDEs that it contains. RTECinc achieves a performance
gain for all window sizes in both datasets. The numbers next
to the arrows in Figures 3(a) and (b) denote the approximate
improvement RTECinc brings compared to RTEC. The per-
formance gain becomes more profound as the sliding window
size increases. Furthermore, RTECinc has more predictable
performance, as indicated by the standard deviations. The
empirical analysis is consistent with the complexity analysis,
which is presented in detail in the original paper [Tsilionis et
al., 2022].
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Figure 3: Average recognition time.
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