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Abstract
In human-aware planning systems, a planning
agent might need to explain its plan to a human
user when that plan appears to be non-feasible or
sub-optimal. A popular approach, called model rec-
onciliation, has been proposed as a way to bring
the model of the human user closer to the agent’s
model. In this paper, we approach the model rec-
onciliation problem from a different perspective,
that of knowledge representation and reasoning,
and demonstrate that our approach can be applied
not only to classical planning problems but also hy-
brid systems planning problems with durative ac-
tions and events/processes.

1 Introduction
From its inception, Explainable AI Planning (XAIP) [Fox
et al., 2017; Kambhampati, 2019] has garnered increasing
interest due to its role in designing explainable agents that
bridge the gap between theoretical and algorithmic plan-
ning literature and real-world applications [Sreedharan et al.,
2020]. The primary motivation of XAIP systems has been
revolving around creating well integrated pipelines that can
generate explanations for a given planning problem, such as
explaining the optimality of a given plan. An ideal XAIP
pipeline typically consists of two main components: (i) Ex-
planation generation; and (ii) Explanation communication.

When designing XAIP systems, one of the main consider-
ations, particularly in the explanation generation component,
is taking into account the persona of the explainee [Lang-
ley, 2019]. While there can be various personas, the end
user has gained significant focus as users often come with
preconceived notions and expectations that may differ from
the agent’s outcomes. In this context, the model reconcilia-
tion problem (MRP) has emerged as a popular paradigm that
utilizes the theory of mind [Premack and Woodruff, 1978]
and considers the user’s mental model during the explanation

∗This paper is an abridged version of our journal article
[Vasileiou et al., 2022].

generation process of the agent [Chakraborti et al., 2017].1
Explanations in MRP aim to bring the user’s model closer
to the agent’s model by transferring a minimum number of
updates. However, most works in the MRP literature em-
ploy automated planning approaches and have been applied
to classical planning problems only [Sreedharan et al., 2020].

To that extent, in this paper we are mainly interested in
the explanation generation component of XAIP, specifically
through the lens of MRP, where we approach it from a differ-
ent perspective – one based on knowledge representation and
reasoning. In particular, we propose a logic-based framework
for explanation generation, where given a knowledge base
KBa (of an agent) and a knowledge base KBh (of a human
user), each encoding their knowledge of a planning problem,
and that KBa entails a query q (e.g., that a proposed plan of
the agent is valid or that the proposed plan is optimal), the
goal is to identify an explanation ϵ ⊆ KBa such that when
it is used to update KBh, then the updated KBh also en-
tails q. We then demonstrate that our approach can be applied
not only to classical planning problems but also hybrid sys-
tems planning problems with durative actions, processes, and
events. More specifically,
• We formally define the notion of logic-based explanations

in the context of model reconciliation problems.
• We introduce a number of cost functions that can be used

to reflect preferences between explanations.
• We present algorithms to compute explanations for both

classical and hybrid systems planning problems.
• We empirically evaluate their performance against the cur-

rent state of the art [Chakraborti et al., 2017] on classical
planning problems as well as provide results on hybrid sys-
tems planning problems.
In summary, our proposed framework advances the state

of the art in model reconciliation approaches for explanation
generation within XAIP along two key dimensions: (1) It im-
proves the scalability for some types of classical planning
problems; and (2) It generalizes the model reconciliation ap-

1A mental model is just the user’s version of the problem, which
can be expressed as a graph, a planning model, or a logical knowl-
edge base.
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proach such that it can be applied to other types of planning
problems beyond classical planning.

While this paper illustrates the main ideas and results of
our framework, a detailed exposition (including the impor-
tance of logic in explainability and how to communicate ex-
planations to human users) can be found in the extended ver-
sion [Vasileiou et al., 2022].

2 Explanation Generation Framework
We introduce the notion of an explanation in the following
setting, where, for brevity, we use the term |=x

L for x ∈ {s, c}
to refer to skeptical (s) or credulous (c) entailment:

Explanation Generation Problem: Given two
knowledge bases KBa and KBh and a formula φ
in a logic L, where KBa |=x

L φ and KBh ̸|=x
L φ,

the goal is to identify an explanation (i.e., a set of
formulae) ϵ ⊆ KBa such that when it is used to
update KBh to K̂B

ϵ

h, the updated K̂B
ϵ

h |=x
L φ.

When updating a knowledge base KB with an explanation
ϵ, the updated knowledge base KB∪ϵ may be inconsistent as
there may be contradictory formulae in KB and ϵ. As such,
to make the knowledge base consistent again, one needs to
remove this set of contradictory formulae γ ⊆ KB from KB.
More formally:

Definition 1 (Knowledge Base Update). Given a knowledge
base KB and an explanation ϵ, the updated knowledge base
is K̂B

ϵ
= KB∪ ϵ\γ, where γ ⊆ KB \ ϵ is a set of formulae

that must be removed from KB such that the updated K̂B
ϵ

is consistent.2

We now define the notion of a support of a formula w.r.t.
a knowledge base KB before defining the notion of explana-
tions.

Definition 2 (Support). Given a knowledge base KB and a
formula φ in a logic L, where KB |=x

L φ, ϵ ⊆ KB is a sup-
port of φ w.r.t. KB if ϵ |=x

L φ. Assume that ϵ is a support of φ
w.r.t. KB. We say that ϵ ⊆ KB is a ⊆-minimal support of φ
if no proper sub-theory of ϵ is a support of φ. Furthermore, ϵ
is a ✁-general support of φ if there is no support ϵ′ of φ w.r.t.
KB such that ϵ subsumes ϵ′.

Definition 3 (Explanation). Given two knowledge bases
KBa and KBh and a formula φ in a logic L, where
KBa |=x

L φ and KBh ̸|=x
L φ, an explanation for φ from

KBa for KBh is a support ϵ w.r.t. KBa for φ such that the
updated knowledge base K̂B

ϵ

h |=x
L φ, where K̂B

ϵ

h is up-
dated according to Definition 1.

Example 1. Consider propositional logic theories over the
set of propositions {a, b, c} with the usual definition of mod-
els, satisfaction, etc. Assume KBa = {a, b, a → c, a ∧ b →
c} and KBh1 = {a}. We have that ϵ1 = {a, a → c} and
ϵ2 = {a, b, a∧ b → c} are two ⊆-minimal supports of c w.r.t.
KBa. Only ϵ1 is a ✁-general support of c w.r.t. KBa since

2Intuitively, one should prefer the set of formula γ that is re-
moved to be as small as possible, though we chose to not require
such a restriction here.

ϵ2 ✁ ϵ1. Both ϵ1 and ϵ2 can serve as explanations for c from
KBa for KBh1 . Of course, KBa is itself an explanation for
c from KBa for KBh1 .

Now consider KBh2
= {a,¬b}. In this case, both ϵ1 and

ϵ2 are possible explanations for c from KBa for KBh2
, but

if ϵ2 is chosen, then ¬b will need to be removed from KBh2

so that it is consistent according to Definition 1.

2.1 Preferred Explanations
When considering explanatory systems, a natural question
that potentially arises would be: Are all explanations equal?
For example, one would want to differentiate between trivial
and non-trivial explanations. While it might be acceptable
in some cases, trivial explanations,3 which are akin to a par-
ent providing the explanation “because I said so” when asked
“why?” by their child, are not preferred in most cases.

Besides computing an explanation ϵ, the agent also needs
to present that explanation to the user or, in other words, de-
scribe the content of the explanation ϵ to the user. Given
knowledge bases KBa and KBh and a formula φ, there
might be several explanations for φ from KBa for KBh.
Therefore, an agent might prefer an explanation that requires
the least amount of effort4 in presenting explanation ϵ to the
human. One way to characterize the effort of the agent when
presenting an explanation is to associate a cost to the ele-
ments of explanation ϵ. For example, one might prefer a
subset-minimal explanation or a shortest length explanation
over others. Next, we quantify the cost of an explanation,
which is then used in to define a general preference relation
over explanations.

We assume a cost function CL that maps knowledge bases
and sets of explanations to non-negative real values:

CL : KBL × Ω → R≥0 (1)

where Ω is the set of explanations and R≥0 denotes the set
of non-negative real numbers. Intuitively, this function can
be used to characterize different complexity measurements
of an explanation. A cost function CL is monotonic if for
any two explanations ϵ1 ⊆ ϵ2, CL(KB, ϵ1) ≤ CL(KB, ϵ2).
CL induces a preference relation ≺KB over explanations as
follows.
Definition 4 (Preferred Explanation). Given a cost function
CL, a knowledge base KBh, and two explanations ϵ1 and
ϵ2 for KBh, explanation ϵ1 is preferred over explanation ϵ2
w.r.t. KBh (denoted by ϵ1 ⪯KBh

ϵ2) iff

CL(KBh, ϵ1) ≤ CL(KBh, ϵ2) (2)

and ϵ1 is strictly preferred over ϵ2 w.r.t. KBh (denoted by
ϵ1 ≺KBh

ϵ2) if

CL(KBh, ϵ1) < CL(KBh, ϵ2) (3)
3There might be cases where we need to explain an assumption

or a fact that is missing from a KB, and therefore, trivial explana-
tions will be succinct and acceptable.

4The term “effort” can refer to the effort required by the agent
to present the explanation, the effort required by the human to un-
derstand the explanation, or both. For instance, the length of the
explanation can serve as a measure of the effort required by both the
agent and the human.
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This allows us to compare explanations as follows.

Definition 5 (Most Preferred Explanation). Given a cost
function CL and a knowledge base KBh, an explanation ϵ
is a most preferred explanation w.r.t. KBh if there exists no
other explanation ϵ′ such that ϵ′ ≺KBh

ϵ.

There are several natural monotonic cost functions. For
example:
• C1

L(KBh, ϵ) = |ϵ|, the cardinality of ϵ, indicates the num-
ber of formulae that need to be explained;

• C2
L(KBh, ϵ) = |ϵ \ KBh|, the cardinality of ϵ \ KBh,

indicates the number of new formulae that need to be ex-
plained;

• C3
L(KBh, ϵ) = length(ϵ) indicates the number of literals

in ϵ that need to be explained.

2.2 Explanations in Planning Problems
Classical and hybrid planning problems can be encoded as
SAT [Kautz and Selman, 1992] and SMT problems [Cash-
more et al., 2020], respectively. As such, our logic-based no-
tions of explanations proposed in the previous section can be
applied to explainable planning, particularly the model recon-
ciliation problem, in the context of explaining classical and
hybrid planning problems. Nonetheless, a model reconcili-
ation problem has been strictly defined for explaining opti-
mal plans [Chakraborti et al., 2017]. We can, however, re-
lax this definition and generalize it for arbitrary, valid plans.
The reason is that, even if optimality cannot be guaranteed,
the human user may have doubts about the validity of a plan
(i.e., whether the plan is sound and can be executed to achieve
the goal). Therefore, valid plan explanations are crucial for
engendering trust in the user.

We focus on the following two problems: (1) Explaining
the validity of a plan to the user, and (2) Explaining the op-
timality of a plan to the user, where we define them using
logical notations.

Plan Validity
Assume π is a valid plan with respect to KBa but not KBh.
In other words, it is not possible to execute π to achieve the
goal with respect to KBh. For example, an action in the plan
cannot be executed because its precondition is not satisfied,
an action in the plan does not exist, or the goal is not reached
after the last action in the plan is executed. From the perspec-
tive of logic, a plan is valid if there exists at least one model
in KBh in which the plan can be executed and the goal is
reached:

Definition 6 (Plan Validity). Given a planning problem Π, a
plan π of Π, where αt is an action of the plan at time step t,
and a knowledge base KBh encoding Π, π is a valid plan in
KBh if KBh|=c

Lπ ∧ gn, where gn is the fact corresponding
to the goal of the planning problem at time step n.

Plan Optimality
Assume that π∗ is an optimal plan in a model of KBa. To
explain the optimality of π∗ to KBh, we need to prove that
no shorter (optimal) plan exists in KBh. Thus, we need to
prove that no shorter plan exists in all models of KBh. This
can be easily done by using the notion of skeptical entailment.

Definition 7 (Plan Optimality). Given a planning problem
Π, a plan π of Π with length n, and a knowledge base KBh

encoding Π, the plan π is optimal in KBh if and only if
KBh|=c

Lπ ∧ gn and KBh|=s
Lϕ, where ϕ =

∧n−1
t=0 ¬gt and

gt is the fact corresponding to the goal of the planning prob-
lem at time step t.

In essence, the query ϕ in the above definition is that no
plan of lengths 1 to n − 1 exists. Therefore, when combined
with the fact that a plan π of length n that achieves the goal
state exists, then that plan must be an optimal plan.

Note that the Definition 7 applies only to classical planning
problems and not hybrid planning problems. The reason is
because the cost of a hybrid plan depends on a user-specified
plan metric, and this cost is not explicitly encoded by SMT
encodings of hybrid plans. Nonetheless, we do not view this
as a significant loss since finding optimal hybrid plans is often
highly intractable [Helmert, 2002].

3 Experimental Evaluation
We now describe some empirical evaluations for finding ex-
planations on classical and hybrid planning problems, en-
coded as SAT and SMT problems, respectively. For a de-
scription of the exact algorithms for computing explanations,
please refer to the extended paper [Vasileiou et al., 2022].

Setup and Prototype Implementation: The experiments
were run on a Macbook Pro comprising an Intel Core i7
2.6GHz processor with 16GB of memory. The knowledge
bases representing the planning problems were each encoded
up to the time step that the optimal (or valid) plan was found.
To encode the knowledge bases for classical planning prob-
lems, we used our own implementation of the encoding by
[Kautz et al., 1996], whereas for hybrid planning problems
we used the encoding provided in SMTPLAN [Cashmore et
al., 2016]. The time limit for all experiments was set to
1500s. We have also made our source code available in a
publicly-accessible repository.5

3.1 Efficacy on Classical Planning Problems
In this set of experiments, we examine the performance of our
approach, referred to as LOGIC, for finding most-preferred ex-
planations for plan validity and optimality on classical plan-
ning benchmarks from the International Planning Competi-
tion (IPC).6 As a baseline, we used the current planning-
based state-of-the-art algorithm by [Chakraborti et al., 2017],
referred to as CSZK – the initials of the last names of the au-
thors.7 We used the explanation length |ϵ| as the cost function
of the algorithms.

We used the actual IPC instances as the model of the agent
(i.e., KBa), and tweaked that model and assigned it to be
the model of the human user (i.e., KBh). In order to make
a more comprehensive analysis, we considered five different

5https://github.com/YODA-Lab/
Explanation-Generation-for-Planning-Problems.

6https://github.com/potassco/pddl-instances.
7We used the implementation of the authors, which is publicly

available at https://github.com/TathagataChakraborti/mmp.
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Prob. Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
|ϵ| CSZK LOGIC |ϵ| CSZK LOGIC |ϵ| CSZK LOGIC |ϵ| CSZK LOGIC |ϵ| CSZK LOGIC

B
L

O
C

K
S
-

W
O

R
L

D

4 1 0.5s 3.0s 2 0.5s 0.7s 3 2.0s 1.5s 3 32.0s 16.0s 2 – 0.7s
5 2 2.5s 8.5s 3 2.0s 2.5s 5 17.0s 6.0s 7 – 194.0s 4 – 2.0s
6 1 1.0s 25.0s 2 0.5s 5.5s 3 3.0s 6.0s 4 213.0s 120.0s 5 – 5.0s
8 3 62.0s 297.0s 3 1.0s 29.5s 6 869.0s 30.0s 7 – 203.0s 5 – 27.0s

E
L

E
V

-
A

T
O

R

1 1 0.5s 0.1s 2 1.0s 0.1s 2 0.5s 0.1s 2 1.0s 0.1s 1 – 0.1s
10 2 1.5s 0.7s 2 0.5s 0.5s 3 3.0s 0.4s 4 57.0s 2.5s 6 – 0.2s
15 2 1.5s 3.0s 2 1.0s 13.0s 3 3.0s 2.0s 4 57.0s 10.0s 6 – 1.2s
19 2 2.0s 8.0s 2 0.5s 25.0s 3 2.5s 10.0s 4 49.0s 20.0s 14 – 5.0s

R
O

V
E

R 1 1 0.5s 6.0s 2 0.5s 7.0s 4 33.0s 5.0s 6 – 5.0s 4 – 1.5s
2 1 1.0s 4.0s 1 0.5s 4.0s 4 39.0s 4.5s 6 – 4.5s 4 – 1.3s
3 1 0.5s 7.0s 2 0.5s 7.5s 4 35.0s 7.0s 6 – 10.0s 6 – 1.5s
4 1 0.5s 4.0s 1 0.5s 4.0s 2 1.5s 4.5s 4 – 4.5s 10 – 5.5s

G
R

I P
P

E
R 1 1 0.5s 1.5s 2 0.3s 3.0s 3 1.5s 40.0s 5 70.0s 45.0s 4 – 2.0s

2 1 0.5s 5.0s 2 0.8s 7.0s 3 2.0s 45.0s 5 73.0s 49.0s 5 – 6.0s
3 1 0.7s 5.0s 2 1.0s 7.0s 3 2.5s 45.0s 5 163.0s 60.0s 8 – 15.0s
4 1 1.5s 38.0s 2 3.0s 50.0s 3 5.0s 50.0s 5 – 80.0s 11 – 28.0s

Table 1: Evaluation of our approach LOGIC and CSZK on Varying
PDDL Domains and Scenarios.

ways to tweak the models, resulting in the following five sce-
narios.
• Scenario 1: We removed one random precondition from

every action in the human’s model.
• Scenario 2: We removed one random effect from every

action in the human’s model.
• Scenario 3: We removed one random precondition and one

random effect from every action in the human’s model.
• Scenario 4: We removed (on average) fifteen random pre-

conditions and effects from every action in the human’s
model.

• Scenario 5: We removed (on average) ten random predi-
cates from the initial states in the human’s model.
Table 1 tabulates the length of the explanations |ϵ| as well

as the runtimes of LOGIC and CSZK. We did not report run-
times of CSZK for Scenario 5 as the available implementa-
tion could not handle that scenario. In general, CSZK out-
performed LOGIC in a majority of cases, except for Scenar-
ios 3 and 4 in all domains. These cases also happen to be the
cases where the explanation length |ϵ| is larger. The reason
is that CSZK needs to search over a larger search space as the
explanation length increases. As such, its runtime also in-
creases. In contrast, the runtimes of LOGIC remain relatively
unchanged with varying explanation lengths. The reason is
that the runtimes of LOGIC are dominated by the size of the
encoded knowledge bases, which are independent of the ex-
planation lengths.

It is important to note that Vasileiou et al. [2021] proposed
a more efficient approach for computing minimal logic-based
explanations in model reconciliation problems.

3.2 Efficacy on Hybrid Planning Problems
In this set of experiments we investigate the generality of our
approach on hybrid planning problems, and specifically, on
plan validity. We consider the same scenarios as in the previ-
ous section.

Table 2 tabulates the results. Overall, LOGIC was able to
maintain small runtimes of less than 1s in the majority of
instances. This is due to the fact that the size of the en-
coded knowledge bases are relatively small because SMT-
PLAN uses the iterative encoding facility of the z3 solver
[De Moura and Bjørner, 2008]. Particularly, the encoding
of each layer consists of the following steps: Adding the new
variables and constraints for the next happening, adding the

Prob. Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
|ϵ| LOGIC |ϵ| LOGIC |ϵ| LOGIC |ϵ| LOGIC |ϵ| LOGIC

L
IN

E
A

R
G

E
N

E
R

. 1 0 0.1s 2 0.1s 2 0.2s 1 0.1s 2 0.1s
3 0 0.1s 2 0.2s 2 0.8s 1 0.2s 2 0.2s
5 0 0.2s 2 0.2s 2 2.0s 1 0.4s 2 0.4s
7 0 0.3s 2 0.5s 2 4.0s 1 1.0s 2 0.6s

T
O

R
I-

C
E

L
L

I 1 1 0.2s 2 0.3s 2 0.4s 3 0.6s 4 0.2s
2 1 0.4s 2 1.3s 2 2.0s 3 1.1s 5 0.9s
3 1 0.5s 2 5.0s 2 11.0s 3 2.8s 7 3.6s
4 1 1.0s 2 16.0s 2 38.0s 3 5.8s 5 1.1s

G
E

N
E

R
.

E
V

E
N

T
S 1 1 0.2s 2 0.2s 3 2.5s 3 0.2s 2 0.2s

2 1 0.3s 2 0.5s 3 5.0s 3 0.5s 3 0.2s
3 2 0.8s 2 1.3s 3 10.0s 3 1.5s 4 0.7s
4 1 1.3s 2 2.0s 3 26.0s 3 2.5s 6 0.9s

C
A

R
N

O
D

R
A

G 1 2 0.2s 1 0.3s 3 0.3s 3 0.3s 2 0.2s
2 2 0.2s 1 0.2s 2 0.4s 3 0.3s 3 0.3s
3 2 0.3s 1 0.3s 2 0.2s 3 0.4s 1 0.1s
4 2 0.2s 1 0.2s 3 0.3s 3 0.3s 2 0.2s

Table 2: Evaluation of our approach LOGIC on Varying PDDL+ Do-
mains and Scenarios.

goal constraints to the new constraint set, pushing the con-
straint set onto the stack, solving, and popping the goal con-
straint set off the stack. As such, at each step in the iterative
deepening with z3, only the latest layer needs to be encoded.
These results demonstrate that our approach can be general-
ized beyond classical planning to hybrid planning, improving
the applicability of explainable planning approaches.

4 Discussion and Conclusions
When designing explanatory systems, a question that of-
ten arise is how to identify, represent, and provide explana-
tions. There is a general belief that logic-based systems are
well equipped to address this question. For example, logic-
based models such as decision trees produce explanations
stemming directly from the model [Lakkaraju et al., 2016;
Ignatiev et al., 2018]. In this work, we examined and eval-
uated this belief by creating a logic-based explanation gen-
eration framework for classical and hybrid planning prob-
lems for the model reconciliation problem. In this context,
we made the following contributions: (1) We approached
the MRP problem from the perspective of knowledge repre-
sentation and reasoning by proposing the notion of expla-
nations and defined plan validity and optimality in terms of
knowledge bases; (2) We proposed several complexity cost
functions to reflect preferences between explanations; (3) We
developed algorithms for computing most-preferred explana-
tions for plan validity and optimality; and (4) We empirically
showed that our approach complements the current state of
the art and is able to generalize beyond classical planning to
hybrid planning.
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