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Abstract
Idle vehicle relocation is crucial for addressing
demand-supply imbalance that frequently arises
in the ride-hailing system. Current mainstream
methodologies - optimization and reinforcement
learning - suffer from obvious computational draw-
backs. Optimization models need to be solved in
real-time and often trade off model fidelity (hence
quality of solutions) for computational efficiency.
Reinforcement learning is expensive to train and
often struggles to achieve coordination among a
large fleet. This paper designs a hybrid approach
that leverages the strengths of the two while over-
coming their drawbacks. Specifically, it trains an
optimization proxy, i.e., a machine-learning model
that approximates an optimization model, and re-
fines the proxy with reinforcement learning. This
Reinforcement Learning from Optimization Proxy
(RLOP) approach is efficient to train and deploy,
and achieves better results than RL or optimization
alone. Numerical experiments on the New York
City dataset show that the RLOP approach reduces
both the relocation costs and computation time
significantly compared to the optimization model,
while pure reinforcement learning fails to converge
due to computational complexity.

1 Introduction
The rapid growth of ride-hailing markets has transformed ur-
ban mobility, offering on-demand mobility services via mo-
bile applications. While major ride-hailing platforms such as
Uber and Didi leverage centralized dispatching algorithms to
find good matching between drivers and riders, operational
challenges persist due to frequent imbalances between de-
mand and supply. Consider morning rush hours as an ex-
ample: most trips originate from residential areas to business
districts where a large number of vehicles accumulate and re-
main idle. Relocating these vehicles back to the demand areas
is crucial to maintaining quality of service and income for the
drivers.

∗The full paper has been published at Journal of Artificial Intel-
ligence Research [Yuan et al., 2022]

Extensive studies have focused on vehicle relocation prob-
lems in real time. Existing methodologies fit broadly into two
categories: model-based and model-free approaches. Model-
based approaches, e.g., Model Predictive Control (MPC) in-
volves the solving of an optimization program using ex-
pected demand and supply information over a future horizon
[Miao et al., 2015; Miao et al., 2017; Iglesias et al., 2017;
Tsao et al., 2018; Riley et al., 2020]. Model-free approaches
(predominantly Reinforcement Learning) train a state-based
decision policy by interacting with the environment and ob-
serving the rewards [Verma et al., 2017; Lin et al., 2018; Wen
et al., 2017; Holler et al., 2019; Oda and Joe-Wong, 2018;
Guériau and Dusparic, 2018; Lin et al., 2018; Jiao et al.,
2021]. While both approaches have demonstrated promising
performance in simulation and (in some cases) real-world de-
ployment [Jiao et al., 2021], they have obvious drawbacks:
the optimization needs to be solved in real-time and often
trades off model fidelity (and hence solution quality) for com-
putational efficiency. Reinforcement learning does not re-
quire a model but needs a large number of samples to train.
Consequently, most work simplifies the problem (e.g., by re-
stricting relocations to nearby regions and/or limiting coordi-
nation among the fleet) to reduce computational complexity.

This paper addresses these challenges by proposing a Re-
inforcement Learning from Optimization Proxy (RLOP) ap-
proach that combines optimization, supervised learning, and
reinforcement learning. The RLOP framework is a special
case of Reinforcement Learning from Expert Demonstra-
tion (RLED) where the expert is an optimization algorithm
[Ramı́rez et al., 2021]. The RLOP has two main steps:

1. It first applies supervised learning to obtain an optimiza-
tion proxy for a relocation optimization, i.e., it trains a
machine learning model that approximates the mapping
between the inputs of the optimization and its actionable
decisions.

2. It then seeds an RL component with the optimization
proxy as the initial policy. The RL component further
improves this policy by interacting with the environment
and capturing the real system dynamics and long-term
effects that are beyond the capabilities of the model-
based optimization.

To the best of the authors’ knowledge, this paper is the first
application of an RLED framework to tackle vehicle relo-
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Figure 1: The Real-Time Ride-Hailing Operations.

cation problems, and one of the few RL models with a fully
centralized policy. The only other paper using a centralized
formulation only demonstrates their approach in a simplified
setting due to computational complexity [Mao et al., 2020].

The RLOP framework has three important benefits. First,
The optimization proxy approximates the model-based opti-
mization with high fidelity and is order of magnitude faster.
Second, The RL component is significantly easier to train
since it starts with a high-quality policy. Third, The RL com-
ponent improves the optimization proxy by capturing long-
term effects and real system dynamics present in sample tra-
jectories.

The application of RLOP framework to relocation prob-
lems comes with several challenges. First, the relocation de-
cisions are typically high-dimensional (e.g., number of ve-
hicles to relocate between each zone) and sparse. This cre-
ates great difficulty for supervised and reinforcement learn-
ing. Second, the predicted relocation decisions may be infea-
sible since most learning algorithms cannot enforce integral-
ity or physical constraints that the decisions need to satisfy.

To tackle these challenges, this paper proposes an
aggregation-restoration-disaggregation procedure. It pre-
dicts the relocation decisions at an aggregated level, restores
them back to feasible solutions, and then disaggregates them
to the original granularity by applying a polynomial-time
transportation optimization. As a result, the dimensionality
and sparsity of the decisions are reduced considerably, and
the approach remains computationally efficient.

The proposed RLOP framework is evaluated on the New
York Taxi data set. The experimental results show that RLOP
reduces the relocation costs by 10% while being order of
magnitude faster than pure optimization and RL. These re-
sults suggest that the RLOP framework provides a promising
approach for the real-time operations of ride-hailing systems.
It is also important to stress that the RLOP framework is gen-
eral and can be applied with any relocation optimization and
RL techniques.

2 Problem Definition
The real-time ride-hailing system, depicted in Figure 1, has
three key components: vehicle routing, idle vehicle reloca-
tion, and dynamic pricing. The vehicle routing algorithm
matches requests to vehicles and chooses the vehicle routes.
It operates at the individual request level with high frequency
(e.g., every 15− 60 seconds). Because of the tight time con-
straints and large number of requests, the routing algorithm is
usually myopic, taking only the current demand and supply

into account. Idle vehicle relocation and dynamic pricing, on
the other hand, are forward-looking in nature. Idle vehicle
relocation repositions the vehicles preemptively to anticipate
demand, and dynamic pricing balances expected demand and
supply in a future horizon. The two decisions also take place
at a lower frequency (e.g., every 5 − 20 minutes). This pa-
per focuses on idle vehicle relocation and abstracts away the
other two components. The goal is to reduce rider waiting
time by relocating idle vehicles while accounting for the re-
location costs. This paper assumes that the ride-hailing plat-
form uses a fleet of autonomous vehicles or their own pool
of drivers who follow instructions exactly - the platform can
thus relocate the vehicles at will.

3 The RLOP Framework
The RLOP framework has two stages: supervised learning
and reinforcement learning. The supervised-learning stage
trains an optimization proxy, i.e., a machine-learning model
that approximates the actionable decisions of an optimization
model. The reinforcement-learning stage takes the optimiza-
tion proxy as the initial policy and refines it by a policy gra-
dient method.

3.1 The Optimization Proxy
The supervised-learning stage trains a machine-learning
model to predict the actionable decisions of a zone-level re-
location model M : S → W where S is the model input
andW is the relocation decision, i.e., the number of vehicles
to relocate between each zone in the dispatch area. Hence
|W| = |Z|2, where Z is the set of zones in the dispatch area.
The training data can be generated by runningM on a set of
problem instances and extracting its results. It is important to
stress that the framework is general and can work with any
relocation model as long as the decisions are at the zone-to-
zone level.

The machine-learning model takes the optimization
model’s input S and predicts its relocation decisions w =
[xr

ij ]i,j∈Z - number of vehicles to relocate between each zone
pair (i, j). In reality, w is high-dimensional (|W| = |Z|2)
and sparse, since most vehicles relocate to a few high-demand
zones. The high-dimensionality and sparsity makes super-
vised learning difficult. It also imposes significant chal-
lenges for RL in the second stage since sampling in high-
dimensional action space is expensive and makes the train-
ing unstable. Therefore, this paper designs an aggregation-
disaggregation procedure - it predicts w at the aggregated
(zone) level and then disaggregates the predictions via an ef-
ficient optimization procedure.

More precisely, the zone-level relocation decision a ∈ A -
number of vehicles to relocate into and out of each zone i ∈ Z
- is predicted by a machine-learning model Ôθ : S → A,
rounded and restored to a feasible solution, and disaggregated
to zone-to-zone level by a transportation optimization prob-
lem T O : A → W . Since T O can be solved in polynomial
time, the procedure remains computationally efficient. Read-
ers are referred to the original paper for a detailed descrip-
tion of this procedure [Yuan et al., 2022]. To ensure that the
machine-learning model can be refined by the policy gradient
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method in the RL stage, Ôθ needs to be differentiable with
respect to its parameters θ. For example, Ôθ can be an artifi-
cial neural network or a linear regression parametrized by θ.
The RLOP framework however is general and can accommo-
date any other machine-learning model.

3.2 Reinforcement Learning
The supervised-learning stage trains an optimization proxy
Ôθ : S → A from an relocation model. The RL process
starts from Ôθ and improves it by a policy gradient method.
Specifically, the RL step models the relocation problem as a
Markov Decision Process (MDP). MDP is characterized by a
state space S , an action space A, a reward function R(s,a),
a transition function P (s′|s,a), and a discount factor γ ∈
[0, 1]. The goal is to find a stochastic decision policy πθ :
S → P(A) parametrized by θ, i.e., a mapping from the state
space to a probability distribution over the action space, that
maximizes the total expected discounted reward

J(θ) = EP,πθ

[
Te∑
t=0

γtR(st,at)

]
(1)

For the present application, the state and action space are the
same as the input and output space of the optimization proxy
Ôθ : S → A so that Ôθ can be transformed into an initial
policy for RL. The details of this transformation will be pre-
sented shortly. The reward function R(st,at) = −ut−βvt is
a weighted average of customer satisfaction and system cost,
where ut is the total waiting time of riders who emerges in
epoch t, vt is the expected time that vehicles will relocate
due to action at, and β is a hyperparameter.

The policy is trained iteratively based on the policy gradi-
ent theorem [Sutton and Barto, 2018]

∇θJ(θ) = EP,πθ

[
Te∑
t=0

Gt∇θ logPπθ
(at|st)

]
(2)

where Gt =
∑Te

τ=t γ
τ−tRτ is the total (dis-

counted) reward since epoch t in the trajectory
τ = (s0,a0, R0, ..., sTe ,aTe , RTe) and Pπθ

(at|st) is
the probability of taking action at in state st under the
decision policy πθ. In reality, the expectation term in (2) is
intractable to compute and is approximated by Monte-Carlo
sampling.

It remains to specify how the optimization proxy Ôθ can
be turned into an initial policy for RL. Recall that Ôθ :
S → A is a deterministic mapping from the state space to
the action space. RL starts from a Gaussian policy π0

θ(·) =

N (Ôθ(·),Σ) centered around Ôθ with covariance Σ. The co-
variance matrix Σ is a diagonal matrix whose diagonal entry
Σii is the (sampling) variance of an relocation action ai (ai
is an entry of a ∈ A). Note that ai is one of the prediction
labels of Ôθ, so its empirical distribution can be estimated
in the supervised-learning stage. Therefore, Σii can be taken
as a certain percentage of ai’s characteristic statistics such
as its empirical mean or median in the supervised-learning
dataset. Prior knowledge on Σ is extremely valuable since a

Algorithm 1: RLOP

1 Train a differential optimization proxy Ôθ to
approximate a given relocation model;

2 Choose learning rate α, discount factor γ, trade-off
parameter β and covariance Σ ;

3 for Episode = 1, 2, ... do
4 for i = 1, ..., N do
5 for t = 0, 1, ...Te do
6 Observe current state sit and sample an

action ait from current policy
πθ(s

i
t) = N (Ôθ(s

i
t),Σ);

7 Round and disaggregate ait to feasible
zone-to-zone level action wi

t by
transportation optimization T O;

8 Implement wi
t in the simulator and observe

reward Ri
t;

9 end
10 end
11 Compute the policy gradient∇θJ(θ) by Eq (2) ;
12 θ ← θ + α∇θJ(θ)
13 end

well-chosen Σ can lead to a more efficient exploration during
training.

The policy gradient algorithm is summarized in Algorithm
1. Note that, after sampling action a from πθ, a should
be rounded and restored to zone-to-zone level by the trans-
portation optimization T O : A → W . Again, note that
the RLOP framework is general and can incorporate any
specific reinforcement-learning techniques (e.g., actor-critic,
PPO, off-policy sampling, etc.) appropriate for the problem
at hand.

4 Simulation Study
The RLOP framework is evaluated on Yellow Taxi Data in
Manhattan, New York City [NYC, 2019]. It is trained from
2017/01 to 2017/05 and evaluated in 2017/06, 8am - 9am of
weekdays, when the demand is at its peak and the need for
relocation the greatest. The experiments use the end-to-end
simulation framework in [Riley et al., 2020]. The simulator
has two main components: a ride-sharing routing algorithm
and a relocation MPC model. The routing algorithm batches
riders into a time window and optimizes every 30 seconds.
The relocation MPC model is executed every 5 minutes. It
partitions the Manhattan area into 60 zones and time into 5-
minute epochs. All models must be executed in the 30 sec-
onds batch window.

4.1 The Optimization Proxy
The optimization proxy approximates the MPC model in [Ri-
ley et al., 2020]. It is trained from 2017/01 to 2017/05.
These daily instances are run by the simulator and the MPC
model’s inputs and outputs are extracted as training data. In
total, 15, 000 data points are used in training and 2500 data
points are held out for testing.
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Lasso MLP LSTM Transformer

MSE 15.90 6.68 6.64 6.45

Table 1: Testing Loss of Machine Learning Models.

Figure 2: Training and Validation Curve of Reinforcement Learning
(Normalized).

Several machine learning models are trained to learn the
relocation decisions. The model inputs are expected de-
mand Dit, expected supply Vit, and expected vehicle short-
age (Dit−Vit) in each zone i and epoch t in the MPC horizon.
The target is zone-level relocation decisions a. The testing
loss is given in Table 1. MLP (multi-layer perceptron) is se-
lected as the final model by virture of good performance and
fewer parameters.

4.2 Reinforcement Learning

The optimization proxy is refined by reinforcement learning
in 2017/05. Since the number of riders in most daily instances
ranges from 22,000 to 29,000, four instances with [23960,
25768, 27117, 28312] riders are selected and the policy is
trained on these representative instances. Algorithm 1 with
the baseline is run with α = 0.005, β = 0.75 and γ = 0.75.
The sampling variance Σii is taken as 0.05a0.75i where a0.75i
is the 75th percentile of action ai in the supervised-learning
data set (recall that ai is a prediction label for the optimiza-
tion proxy). To make sure that RL does not overfit on the
selected representative instances, the policy is validated on
other instances in 2017/05 after each training episode and the
algorithm stops when the average reward on the validation set
fails to improve for 5 consecutive episodes. The training and
validation curves (broken down into waiting and relocation
time) in Figure 2 show that the relocation costs drop dramat-
ically, while the waiting times stay about the same. The al-
gorithm converges in 55 episodes: the training is significantly
more efficient computationally than pure reinforcement learn-
ing algorithms, which typically converge in tens of thousands
of episodes.

Avg Wait Time Avg Rlc. Time Avg Run Time

MPC 2.21 4.03 1.603
Opt. Proxy 2.18 4.06 0.016

RLOP 2.21 3.62 0.019

Table 2: Summary Statistics of Tested Models.

4.3 Evaluation Results
The trained policy is evaluated on weekdays in 2017/06. The
proposed RLOP approach is compared with the optimization
proxy as well as the MPC optimization. Pure reinforcement
learning without an initial policy seeded with the optimiza-
tion proxy (Algorithm 1 without step 1) fails to converge due
to the high-dimensional state and action spaces: it is too ex-
pensive computationally to be applied in this setting. Table 2
reports average rider waiting time and vehicle relocation time
(in minutes) as well as model run time (in secondss). RLOP
achieves similar rider waiting time as the other two models
but with less relocation cost. In particular, its relocation time
is 10.1% lower than the MPC and 10.8% lower than the op-
timization proxy. Moreover, the optimization proxy and the
RLOP are much faster than the MPC and are guaranteed to
run in polynomial time. The longest MPC instance takes
9.73s while the optimization proxy and the RLOP framework
remain within fractions of a second on all instances. The main
computational cost of the RLOP framework lies in the offline
stage where data for supervised learning and RL are gener-
ated through simulation. Nevertheless, RLOP is still more
efficient than RL which requires a prohibitively large number
of samples to train. The optimization proxy did slightly better
than the MPC on certain metrics since the MPC optimization
is based on an approximation of the ride-sharing system - its
decisions are optimal for the approximation but not necessar-
ily for the real system. Overall, these promising results show
that the RLOP is an efficient and effective approach for idle
vehicle relocation in real-time settings.

5 Conclusion
Preemptively relocating idle vehicles is crucial for addressing
demand-supply imbalance that frequently arises in the ride-
hailing system. Current mainstream methodologies - opti-
mization and reinforcement learning - suffer from computa-
tional complexity in either offline training or online deploy-
ment. This paper proposes a reinforcement learning from
Optimization Proxy (RLOP) approach to alleviate their com-
putational burden and search for better policies. It trains
a machine-learning policy to approximate an optimization
model and then refines the policy by reinforcement learn-
ing. To reduce dimensionality and sparsity of the predic-
tion and action space, this paper presents an aggregation-
disaggregation procedure which predicts relocation actions
at the aggregated level and disaggregates the predictions via
a polynomial-time optimization. On the New York City
dataset, the RLOP approach achieves significantly lower relo-
cation costs and computation time compared to the optimiza-
tion model, while pure reinforcement learning is too expen-
sive computationally for practical purposes.
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