
Unsupervised and Few-Shot Parsing from Pretrained Language Models (Extended
Abstract)∗

Zhiyuan Zeng and Deyi Xiong
Tianjin University

{zhiyuan zeng, dyxiong}@tju.edu.cn

Abstract
This paper proposes two Unsupervised constituent
Parsing models (UPOA and UPIO) that calculate
inside and outside association scores solely based
on the self-attention weight matrix learned in a pre-
trained language model. The proposed unsuper-
vised parsing models are further extended to few-
shot parsing models (FPOA, FPIO) that use a few
annotated trees to fine-tune the linear projection
matrices in self-attention. Experiments on PTB and
SPRML show that both unsupervised and few-shot
parsing methods are better than or comparable to
the previous methods.

1 Introduction
Automatically parsing a sentence to unveil the latent syn-
tactic structure of the sentence is a long-standing task in
natural language processing. Supervised syntactic parsing
usually requires manually-annotated syntactic trees from a
large treebank for training. However, building a treebank
like PTB [Dahlmeier et al., 2013] is expensive and time-
consuming. Therefore, Unsupervised constituent parsing,
which learns underlying structures without using any anno-
tated trees, becomes an alternative to supervised syntactic
structure learning [Shen et al., 2018a; Shen et al., 2019;
Drozdov et al., 2019; Kim et al., 2019b; Kim et al., 2019a;
Wang et al., 2019].

In this paper, we propose a new framework for unsuper-
vised constituent parsing. First, we define a new syntactic dis-
tance for Unsupervised constituent Parsing, which is calcu-
lated according to an Outside Association score solely based
on self-attention weight matrix: UPOA. Previous findings
from many probing studies suggest that pretrained language
models [Devlin et al., 2019; Liu et al., 2019; Radford et al.,
2019] are able to learn and embed latent syntactic structures
in their parameters in an implicit way [Tenney et al., 2019;
Jawahar et al., 2019]. Therefore, in UPOA, we exploit the
self-attention weight matrix in BERT [Devlin et al., 2019]
to uncover latent syntactic structures of sentences. Particu-
larly, we estimate the syntactic distance between two adjacent

∗The full paper is published in Artificial Intelligence 305 (2022)
103665.

words as the negative self-attention weight between two ad-
jacent spans that consume the two words. With the estimated
syntactic distance, UPOA splits a span at the split point with
the largest syntactic distance. However the syntactic distance
defined in UPOA only considers the association between ad-
jacent spans (outside association), ignoring the association
among words inside a span (inside association). Therefore,
we further propose an enhanced Unsupervised Parsing model
UPIO, which splits a span according to the strength of both
Inside and Outside association. The inside association is also
estimated with the self-attention weights. With the estimated
inside association and outside association, we can build a syn-
tactic tree for a sentence with a greedy or chart-based parsing
algorithm.

Second, we extend the UPIO to FPIO, a few-shot version
of UPIO that can learn substantially better syntactic structures
to narrow the performance gap between unsupervised and su-
pervised parsing with just a few annotated trees. The funda-
mental idea behind FPIO is based on our finding with UPIO
that the two linear projection matrices used by the query and
key in the self-attention mechanism have a great impact on the
parsing accuracy of the FPIO. We therefore freeze other pa-
rameters in BERT and propose a method to retrain (i.e., fine-
tune) the two projection matrices on a few annotated trees.
Similarly, we extend the UPOA to FPOA, a few-shot version
of UPOA.

We carry the unsupervised and few-shot parsing experi-
ments on the Penn Treebank (PTB) [Dahlmeier et al., 2013]
and SPMRL [Seddah and others, 2013] dataset. Our contri-
butions can be summarized as follows:

• We propose an unsupervised constituent parsing model
UPOA that calculates an out association score for span
segmentation solely based on the self-attention weight
matrix in a pretrained language model, and further pro-
pose an enhanced model, UPIO, which exploits both in-
side and outside association scores for estimating the
likelihood of a span.

• We further extend our unsupervised parsing models
UPOA and UPIO to few-shot learning methods FPOA
and FPIO, which, trained on just a few annotated exam-
ples, substantially outperforms the few-shot and super-
vised parsing methods on the Penn Treebank and most
languages of SPMRL.
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Figure 1: The constituent tree (a) and the distance matrix corre-
sponding to it (b) of an example sentence “The government ’s action
was unusual”.

• We conduct experiments and in-depth analyses on the
proposed unsupervised and few-shot parsing models,
which not only demonstrate the effectiveness of both
models, but also provide interesting findings, e.g., those
with few-shot parsing on different layers and self-
attention heads.

2 Unsupervised Parsing From Pretrained
Self-Attention

In this section, we introduce two unsupervised parsing meth-
ods (UPOA and UPIO) to compute split scores based on the
self-attention weights from a pretrained language model.

2.1 Estimating Split Scores Based on Syntactic
Distance

We first introduce the syntactic distance presented by Shen et
al. [2018a] and propose a new approach to calculating syntac-
tic distance for unsupervised parsing from a distance matrix.

According to Shen et al. [2018a], the syntactic distance
of two leaves is defined as the height of the lowest common
ancestors of these two leaves. For the unlabeled constituent
tree in Figure 1a, the syntactic distance of leaf “The” and
leaf “government” is 2, while the syntactic distance of leaf
“government” and leaf “’s” is 1. Shen et al. [2018b] propose
a top-down parsing method that splits a span according to
the syntactic distance between two adjacent leaves. A span
is split between two adjacent words with the largest syntactic
distance. The large syntactic distance indicates the two leaves
share few common ancestors.

The syntactic distance defined in the aforementioned way
shares some common properties with the dot product of two
vectors. Firstly, syntactic distance measures the dissimilarity
between two words according to the number of their com-
mon ancestors in the tree, while the dot product can be used
to measure the similarity between two words with their vec-
tor representations. Secondly, a leaf node has the smallest
syntactic distance with itself, while a vector has a high dot
product with itself. Therefore we use the dot product of vec-
tors to approximate the negative syntactic distance1 of two

1The negative syntactic distance is not a negative number, it is
the number of common ancestors of two leaves. The smaller the
syntactic distance is, the more ancestors the two leaves share.

words. The self-attention matrix of every head of a pretrained
language model (particularly BERT used in this paper) con-
tains normalized dot products of different word representa-
tions. Therefore every attention matrix can be taken as an
approximation to the negative syntactic distance matrix.

If two spans have no intersection, the syntactic distance
from any word in one span to any word in the other span is the
same. For example in Figure 1b, the syntactic distances from
any word in the span “The government ’s action” to any word
in the span “was unusual” are all 4. Although we can take the
negative attention weight of two adjacent words as the syn-
tactic distance and apply the top-down algorithm proposed
by Shen et al. [2018b] for unsupervised parsing, it is better
to exploit the attention weights between two adjacent spans,
instead of adjacent words, to estimate the syntactic distance,
which can reduce the estimation bias of of syntactic distance.
Given two adjacent spans: span(x, y), span(y + 1, z), we av-
erage the negative attention weights from words in one span
to words in the other span as the syntactic distance between
these two spans:

d(span(x,y), span(y+1,z)) = −

y∑
i=x

z∑
j=y+1

aij +
z∑

i=y+1

y∑
j=x

aij

2(y − x+ 1)(z − y)
(1)

where aij is the attention weight that word i attends to word
j. We can take the syntactic distance between span(x, y) and
span(y + 1, z) as the split score of split point y in span(x, z),
and parse a constituent tree from a self-attention weight ma-
trix with a greedy or chart-based parsing algorithm.

2.2 Estimating Split Scores Based on the Strength
of Inside and Outside Association

In a constituent tree, intuitively the strength of the associa-
tion among words inside a constituent (inside association)
is stronger than that of association to words outside the con-
stituent (outside association). The syntactic distance can be
considered to be related with the outside association, which
measures the distance between two adjacent spans. However,
it does not consider the inside association, which measures
the distance between words inside the span.

Based on the aforementioned intuition, we compute the
split score according to the inside association together with
outside association. We first define the span score which mea-
sures how likely a span can be a constituent. For this, we
again resort to the self-attention weights of pretrained lan-
guage models, as they can be regarded as a relatedness metric
between words. Given a span (x, y) from position x to y, the
stronger the inside association and the weaker the outside as-
sociation, the more possible that span (x, y) is functioning as
a constituent. Therefore we estimate two scores for (x, y):
sin(x, y) measuring the strength of the inside association and
sout(x, y) for the outside association. We define sin(x, y) as
the average attention weights aij inside the span which can
be formulated as follows:

sin(x, y) =

∑y
i=x

∑y
j=x aij

(y − x+ 1)2
(2)

Generally, the span score of a span is not only related to its
adjacent span, but all other words outside the span. Therefore

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Journal Track

6996



we formulate the outside association as the average attention
weights between the words inside the span and all other words
outside the span:

sout(x, y) =

y∑
i=x

n−1∑
j=0,j /∈[x,y]

aij +
n−1∑

i=0,i/∈[x,y]

y∑
j=x

aij

2(y − x+ 1)n− 2(y − x+ 1)2
(3)

where n is the length of the sentence that consumes the span
(x, y). The numerator of the above equation is the sum of
all attention weights aij corresponding to the outside asso-
ciation. The first component in the numerator estimates the
attention association from words inside the span to words out-
side the span while the second indicates the attention associ-
ation from words outside the span to words inside the span.

Given the inside association score sin(x, y) and the outside
association score sout(x, y), the score of span (x, y) to be a
constituent can be estimated as follows:

sspan(x, y) = sin(x, y)− sout(x, y) (4)

Given the span score of two adjacent spans: sspan(x, z − 1)
and sspan(z, y), we can estimate the split score as the sum of
two span scores:

ssplit(x, y, z) = sspan(x, z − 1) + sspan(z, y) (5)

The estimated split scores could be used for parsing with a
greedy or chart-based algorithm.

3 Few-Shot Parsing
The attention weight matrix of BERT is the normalized dot
product of a query Q and a key K, as shown in Eq. (6).
The essential information of the query and key is from the
hidden representation HL−1 of the previous layer. They are
computed as the product of HL−1 with WQ and WK , as
shown in Eq. (7). We denote the dimension of HL−1 as
dmodel. WQ,WK ∈ Rdmodel×dmodel/h , h is the number of atten-
tion heads. BERT uses two matrices (WQ,WK) to linearly
project HL−1 onto different sub-spaces and then computes
the attention matrix as follows:

Attention = softmax(
QKT

√
dmodel

) (6)

Q = HL−1WQ

K = HL−1WK
(7)

We have explored all attention weight matrices of BERT
to unsupervisedly parse sentences2, and have found that the
parsing results of different heads vary greatly even in the
same layer. The differences among different heads are es-
sentially from the different two linear projections: WQ and
WK . Therefore, we conjecture that they have a great impact
on parsing and that we may infer better parse trees with better
projections.

To verify this, we freeze other parameters of BERT, and
retrain the two linear projections (WQ,WK) with annotated

2The experiment results can be found in Section 5.2 of our full
paper [Zeng and Xiong, 2022]

trees. Given the binarized tree of a sentence of length n, there
are n− 1 split points in the tree, and each split point is corre-
sponding to a span of the sentence and an internal node of the
tree. We denote the jth split point as splitj and the span split
by splitj as spanj . We can compute the split scores of these
split points with Eq. (1) or Eq. (5). To make the computation
suitable to our training, we normalize the split scores of each
span using the softmax function:

p(splitj | spanj ; θ) =
essplit(spanj ,splitj)∑n−1
k=1 e

ssplit(spanj ,k)
(8)

where θ is the two matrices WQ, WK , ssplit(spanj , k) is de-
fined in Eq. (1) or Eq. (5). The normalized scores can be seen
as the probability of choosing a split point from the corre-
sponding span. Multiplying the probabilities of all split points
in a tree, we can get the probability of this tree. Given a bina-
rized ground-truth tree, which contains n− 1 split points, we
can compute the probability of the tree as follows:

p(tree | S; θ) =
∏

splitj∈tree

p(splitj | spanj ; θ) (9)

where splitj ∈ tree denotes that splitj is corresponding to a
node in the tree and S represents the sentence. We maximize
the probability of ground-truth trees to optimize θ, which is
equivalent to minimizing the negative log likelihood:

LMLE
θ = −

N∑
i

log(p(treei | Si; θ)) (10)

where N is the number of annotated trees used for training
θ, treei is the binarized annotated tree of sentence Si. Since
the parameters to be tuned are just WQ and WK , the two
linear projection matrices, we can use a few tree samples to
well train them. At inference, we use the trained projection
matrices to replace the original ones in BERT.

4 Experiments
We evaluated our unsupervised and few-shot parsers on PTB
[Dahlmeier et al., 2013] for English and SPMRL [Seddah and
others, 2013] for eight languages. For experiments on PTB,
our models were built based on the pretrained base-uncased
BERT released by Devlin et al. [2019]. While for experi-
ments on SPMRL, our models were built based on the pre-
trained multilingual-base-uncased BERT released by Devlin
et al. [2019]. We denote our unsupervised parser based on
the syntactic distance (outside association) as UPOA, the un-
supervised parser based on the strength of both the inside and
outside association as UPIO, the few-shot parser based on the
syntactic distance (outside association) as the FPOA, and the
few-shot parser based on both the inside and outside associ-
ation as the FPIO. The detailed experiment settings can be
found in Zeng and Xiong [2022].

4.1 Unsupervised and Few-Shot Parsing on PTB
Unsupervised parsing. We compared UPOA and UPIO
with the previous unsupervised parsing methods on PTB. The
results are shown in Table 2. Although UPOA and UPIO
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Model Korean German Polish Hungarian Basque French Hebrew Swedish
Sentence-level F1

Kim et al. [2020a] 45.7 39.3 42.3 38.0 41.1 45.5 42.8 38.7
UPOA 43.6 40.9 46.4 38.5 27.2 40.2 44.5 42.0
UPIO 40.3 40.0 46.8 35.5 24.7 38.8 42.8 41.9

Corpus-level F1

UPOA 48.9 41.59 49.71 42.3 36.43 38.63 45.08 42.97
UPIO 45.5 40.4 49.8 39.5 33.9 36.6 43.1 42.6
FPOA 46.4 42.2 60.2 43.7 29.5 50.5 60.1 57.8
FPIO 38.6 41.7 60.3 45.31 30.9 50.9 60.6 57.8

Berkeley 29.4 40.0 35.6 50.3 29.4 57.0 42.2 68.6
LB 25.6 16.5 25.4 18.3 29.2 9.0 12.1 15.7
RB 25.4 18.7 47.6 19.3 27.0 26.5 32.1 37.0

Table 1: F1 scores of models (tuned/trained on PTB) evaluated on 8 languages of SPMRL. The hyper-parameters of Kim et al. [2020b],
UPOA and UPOA were tuned on the validation set of PTB, while the parameters of FPOA, FPIO and Berkeley parser were trained on 80
trees from the training set of PTB. The results of Kim et al. [2020b] are produced with their top-down parsing algorithm.

Model
Corpus level F1 score

WSJ-test WSJ10
µ σ max µ σ max

ON-LSTM 47.7 1.6 49.4 65.1 1.7 66.8
Tree-T 49.5 - 51.1 66.2 - 68.0

C-PCFG 52.4 - - - - -
UPOA 50.9 0.2 51.4 72.6 0.6 73.8
UPIO 50.3 0.4 51.0 73.8 0.4 74.5

Random 21.6 - 21.6 31.9 - 31.9
LB 9.0 - 9.0 19.6 - 19.6
RB 39.8 - 39.8 56.6 - 56.6

Table 2: F1 scores of unsupervised parsing on PTB. WSJ-test de-
notes the test set of PTB, while WSJ10 is a subset of the whole
PTB where sentence length is ≤ 10. The results shown in the ta-
ble are evaluated with corpus-level F1 score. ON-LSTM: Shen et
al. [2019]. Tree-T: Tree-Transformer [Wang et al., 2019]. C-PCFG:
Kim et al. [2019a]

underperforms the state of the art (CPCFG), they are sub-
stantially better than the other models, especially on short
sentences (WSJ10), which indicates that the self-attention
weights of BERT can actually approximate the syntactic dis-
tances and be used to estimate the association scores.
Few-Shot parsing. We also compared FPOA and FPIO
with a few-shot parsing method [Shi et al., 2020] and the su-
pervised state of the art (Berkeley parser [Kitaev et al., 2019])
on PTB. The results are shown in Table 3. Training on a few
(10,20,40) annotated trees, both FPIO and FPOA outperform
the supervised Berkeley parser substantially and consistently.
FPIO is also better than the compared few-shot parser [Shi et
al., 2020] training on 10 annotated trees.

4.2 Cross-Lingual Parsing on SPMRL
We evaluated the cross-lingual parsing performance of both
unsupervised parsers (UPOA, UPIO) and few-shot parsers
(FPOA, FPIO) on SPMRL datasets [Seddah and others,
2013]. We first tuned the hyper-parameters of (UPOA and
UPIO) and the parameters of (FPOA and FPIO) on PTB, and

Model 10 20 40
F1µ F1max F1µ F1max F1µ F1max

FPOA 48.4 50.3 54.4 55.5 58.0 59.7
FPIO 53.7 57.4 60.4 61.6 65.3 66.6

Berkeley 27.2 32.8 38.3 40.3 47.8 49.9
FSS - 53.4 - - - -

Table 3: F1 scores of FPOA and FPIO trained on different numbers
of annotated trees from the validation set of PTB, evaluated on the
test data of PTB. FSS: a few-shot parsing method [Shi et al., 2020].
Berkeley: a supervised parsing method [Kitaev et al., 2019]

then evaluated them on SPMRL dataset [Seddah and others,
2013]. We compared our models with a multilingual unsuper-
vised parser [Kim et al., 2020b], and the multilingual Berke-
ley parser [Kitaev et al., 2019]. The detailed experiment set-
tings can be found in our full paper [Zeng and Xiong, 2022].
The results are shown in Table 1. Both our unsupervised
parsers (UPOA, UPIO) and few-shot parsers (FPOA, FPIO)
significantly outperform the supervised Berkeley parser on 5
languages (8 languages in total). UPOA is also superior to the
compared unsupervised parser [Kim et al., 2020b] on another
5 languages.

4.3 Analysis
More experiments and analyses can be found in our full pa-
per [Zeng and Xiong, 2022], from which we have the fol-
lowing findings: 1) both UPOA and UPIO only need a few
(even only 1) annotated trees for hyper-parameter tuning, 2)
FPOA/FPIO achieves the best few-shot parsing performance
on middle layers of BERT, 3) the linear projection matrices
in FPOA/FPIO are in low-rank, 4) we can detect constituents
from sentences by visualizing the attention weight matrices
used for parsing.
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