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Abstract
First-order model counting (FOMC) is the task
of counting models of a first-order logic sentence
over a given set of domain elements. Its weighted
variant, WFOMC, generalizes FOMC by assigning
weights to the models and has many applications in
statistical relational learning. More than ten years
of research by various authors has led to identifi-
cation of non-trivial classes of WFOMC problems
that can be solved in time polynomial in the num-
ber of domain elements. In this paper, we describe
recent works on WFOMC and the related problem
of weighted first-order model sampling (WFOMS).
We also discuss possible applications of WFOMC
and WFOMS within statistical relational learning
and beyond, e.g., automated solving of problems
from enumerative combinatorics and elementary
probability theory. Finally, we mention research
problems that still need to be tackled in order to
make applications of these methods really practical
more broadly.

1 Introduction
First-order logic is a formal framework that allows reason-
ing about statements such as all humans are mortal, which
can be expressed by the first-order logic sentence ∀x :
Human(x) ⇒ Mortal(x). It is a useful tool for reasoning
about information that is certain. Weighted first-order model
counting (WFOMC) [Van den Broeck et al., 2011] is the task
of computing the weighted sum of models of a given first-
order logic sentence (how the weights are computed will be
explained in more detail in Section 2). Crucially, WFOMC
extends the reach of what can be done with first-order logic
to reasoning under uncertainty—it is used among others
for inference tasks in statistical relational learning [Getoor
and Taskar, 2007]. Another related problem is weighted
first-order model sampling (WFOMS) [Wang et al., 2022;
Wang et al., 2023] which, given a first-order logic sentence,
asks to sample a model of the sentence with probability pro-
portional to its weight and can be used in generative statistical
relational learning models.

In general, both WFOMC and WFOMS are intractable
[Beame et al., 2015; Wang et al., 2023], however, there are

non-trivial fragments of first-order logic which have been
identified as tractable for WFOMC [Van den Broeck, 2011;
Van den Broeck et al., 2014; Kazemi et al., 2016; Kuusisto
and Lutz, 2018; Kuželka, 2021; Van Bremen and Kuželka,
2021; Tóth and Kuželka, 2023] and for WFOMS [Wang et
al., 2022; Wang et al., 2023]. These fragments are already in-
teresting enough for applications, which we discuss in more
depth in Section 4.

Before delving into the technical details and before de-
scribing the recent results on tractable fragments, which we
do in the next sections, let us use the the remainder of this sec-
tion to give two toy examples illustrating the use of WFOMC
and WFOMS.

1.1 Model Counting: A Toy Example
We start with an example illustrating the use of first-order
model counting for high-level probabilistic reasoning.
Example 1. Alice wants to set up a Secret Santa event for
students of her combinatorics class. For that she needs to
randomly assign who will be giving presents to whom, with
the constraint that no one should be assigned to give presents
to themselves. So she puts the names of her students writ-
ten on pieces of paper in a hat and lets everyone draw one
name from the hat. If someone draws their own name, the
whole procedure is restarted from scratch. She knows that
with high probability she will not need to repeat the process
for too long. Why? Assuming the process by which the stu-
dents are drawing names from the hat is really random, the
process can be thought of as sampling a permutation uni-
formly at random. The event that no one is assigned to them-
selves corresponds to drawing a permutation without fixed
points, also known as a derangement. Having taught com-
binatorics, Alice knows how to compute the number of de-
rangements of a set of n elements, usually denoted !n. Say,
Alice’s class has 30 students. Then the probability of success
is !30/30! ≈ 0.37. From that she can easily compute, for in-
stance, an upper bound on the expected number of repetitions
she would need.

The problem of counting derangements was solved already
in 18th century and is a standard topic in introductory discrete
math courses, nonetheless, let us now pretend that we do not
know how to solve it. So instead of computing the formula for
the number of derangements by hand, we now show how this
problem could be solved using first-order model counting.
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Example 2 (Continued). We can start by writing a first-order
logic sentence that encodes permutations:

Ψperm = ∀x∃=1y R(x, y) ∧ ∀y∃=1x R(x, y),

which can be read as follows: First, ∀x∃=1y R(x, y) ex-
presses that R is a binary relation such that for every x there
is exactly one1 y for which R(x, y) holds (i.e., R is a func-
tion). Second, ∀y∃=1x R(x, y) means that for every y there
is exactly one x such that R(x, y). Having already estab-
lished that R is a function, we can read this together as: R
is a bijection, or in other words, R is a permutation. So the
next step is to encode derangements but that is easy—we only
need to forbid the permutations to have fixed points and that
can be done by appending ∀x ¬R(x, x) to Ψperm. That is:

Ψdera = Ψperm ∧ ∀x ¬R(x, x).

Now, if we enumerated the models of the sentence Ψperm

on a set of n domain elements, they would all correspond to
permutations. Likewise, if we enumerated the models of the
sentence Ψdera they would all correspond to derangements.
Hence, to compute the probability that a randomly sampled
permutation of 30 elements is a derangement, we can just
compute FOMC(Ψdera, 30)/FOMC(Ψperm, 30) ≈ 0.37,
where we used FOMC(Ψ, n) to denote the (unweighted)
model count of the sentence Ψ on a domain of size n. Im-
portantly, as it turns out both Ψperm and Ψdera are tractable
for WFOMC, which means we can compute the model counts
in time polynomial in n.

1.2 Model Sampling: A Toy Example
The strategy used by Alice in Example 1 to sample derange-
ments is known as rejection sampling. It works fine in this
case because the probability of success, which here corre-
sponds to obtaining a derangement when sampling permuta-
tions, is relatively high. However, that is not always the case
as illustrated by the next example.
Example 3. Suppose that Alice does not teach just combina-
torics but also discrete mathematics, some students take both
courses while others take only one, and she wants to orga-
nize a joint Secret Santa for all her students, satisfying the
following constraints: (i) no one is assigned to give a present
to themselves, (ii) if A is assigned to give a present to B then
both A and B must be taking at least one of the two courses
together. In this case, depending on the size of the overlap
of the two courses, if Alice wanted to use the same rejection
sampling strategy as in Example 1, the number of required
repetitions might grow very fast (exponentially in the number
of students).2 Therefore in this case, Alice needs a different
solution.

1The “exists exactly one” part is what the counting quantifier
∃=1 expresses. Counting quantifiers are introduced in Section 2.

2To illustrate this, denote the set of students in the combinatorics
course C and the set of students in the discrete mathematics course
D. Suppose that there are 3n students in total and that |C \ D| = n,
|C ∩ D| = n, and |D \ C| = n. Then it can be shown that the
probability that the constraint (ii) is satisfied in a randomly sampled
permutation is bounded from above by 1/2n. That also means that
the expected runtime of the rejection sampling scheme would be
exponential in n.

Fortunately, as we discuss in Section 2, one can use
WFOMS to solve Alice’s problem from the above example
in polynomial time.3

Example 4 (Example 3 continued). To solve her sampling
problem using WFOMS, Alice can construct the first-order
logic sentence:

Ψdera∧
∀x∀y (R(x, y) ⇒ ((C(x) ∧ C(y)) ∨ (D(x) ∧D(y))))

∧
∧
t∈C

C(t) ∧
∧

t∈∆\C

¬C(t) ∧
∧
t∈D

D(t) ∧
∧

t∈∆\D

¬D(t),

where C contains the students taking combinatorics, D the
students taking discrete math and ∆ = C ∪ D is the domain.
We can read this sentence as: R must be a derangement (that
is the Ψdera part), if x is assigned to give a present to y then
they both take the combinatorics course ((C(x) ∧ C(y))) or
they both take the discrete math course ((D(x) ∧D(y))), the
last part specifies which students take which classes. What
remains is just to call WFOMS to generate a sample.

2 Tractable Counting
The search for fragments of first-order logic that are tractable
for WFOMC has roots in the area of artificial intelligence
known as statistical relational learning [Getoor and Taskar,
2007], where people had noticed that the first-order nature of
statistical relational learning models allows more efficient in-
ference than what can be achieved by standard inference algo-
rithms on ground instances of the same models, e.g., [Poole,
2003]. The overarching term used to describe the class of
methods that exploit first-order nature and symmetries in such
models is lifted inference (see, e.g., the book [Van den Broeck
et al., 2021] for a recent overview). The actual WFOMC task
then appeared in the literature a bit later [Van den Broeck et
al., 2011].

In this paper, we focus on tractability of the so-called sym-
metric weighted first-order model counting problem [Beame
et al., 2015] which is defined as follows.
Definition 1. Let ∆ be a set of domain elements and let w(P )
and w(P ) be functions from predicate symbols to real num-
bers. Let HB denote the Herbrand base over the domain ∆
w.r.t. a given first-order logic language L. Let pred : HB 7→
P map each atom to its predicate symbol. We define

WFOMC(Ψ,∆, w, w) =
∑

ω⊆HB:ω|=Ψ

W (ω,w,w),

where the weight of ω is computed as

W (ω,w,w) =
∏
l∈ω

w(pred(l))
∏

l∈HB\ω

w(pred(l)).

That is, WFOMC is the sum of weights of all models of the
sentence Ψ.

3Obviously, it is also possible to construct a fast sampler by hand
without relying on WFOMS, but that would require effort and exper-
tise, whereas one of the goals we wish to achieve with WFOMS is
to free programmers/users from such tedious tasks by giving them a
declarative framework for combinatorial sampling.
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We also define first-order model count (FOMC) as a
special case: FOMC(Ψ,∆) = WFOMC(Ψ,∆, w1, w1),
where w1(P ) = 1 for all P .

Example 5. Let ∆ = {A,B}, let L consist of predi-
cates heads, tails, w(heads) = 2, w(tails) = w(heads) =
w(tails) = 1, and Γ = ∀x : (heads(x) ∨ tails(x)) ∧
(¬heads(x) ∨ ¬tails(x)). There are four models of Γ
on the domain ∆: ω1 = {heads(A), heads(B)}, ω2 =
{heads(A), tails(B)}, ω3 = {tails(A), heads(A)} and ω4 =
{tails(A), tails(B)}. The resulting first-order model count
is FOMC(Γ,∆) = 4 and the weighted model count is
WFOMC(Γ, w, w,∆) = 4 + 2 + 2 + 1 = 9.

So far in this paper, we have talked about tractability
of WFOMC without precisely defining what we mean by
it. Since there is no hope to find an algorithm that would
scale polynomially with the size of the given first-order logic
sentences even for fragments such as FO1, which contains
sentences with at most one logical variable (unles P =
NP), most of the focus in this area has been on identify-
ing fragments containing first-order logic sentences for which
WFOMC can be computed in time polynomial in the size of
the domain. The term coined for this kind of tractability by
Van den Broeck [2011] is domain liftability and it is an ana-
logue to data complexity used in database theory.

From Zero to FO2. One of the first breakthroughs in lifted
inference for WFOMC came from the two seminal papers
[Van den Broeck, 2011; Van den Broeck et al., 2014] which
together established domain liftability of FO2, which is the
two-variable fragment of first-order logic. This was quickly
complemented by a hardness result [Beame et al., 2015],
showing that WFOMC for the three-variable fragment FO3

is not domain-liftable (under plausible complexity-theoretic
assumptions).

From FO2 to C2. While FO3 is not a domain-liftable frag-
ment (under plausible assumptions) due to the negative re-
sults from [Beame et al., 2015], it does not mean that the fron-
tiers of tractability cannot be pushed beyond FO2. Recently,
we showed that another fragment, called C2, is domain-
liftable [Kuželka, 2021]. C2 is an interesting fragment, which
had been previously studied in theoretical computer science
[Graedel et al., 1997]. It extends FO2 by allowing counting
quantifiers of the form ∃=k (“exist exactly k”), ∃≥k (“exist at
least k”) and ∃≤k (“exist at most k”) and is strictly more ex-
pressive than FO2. For instance, it is possible to encode per-
mutations, derangements, k-regular graphs and many other
structures in C2 (and then count them).

Beyond C2. Another strategy how to extend tractable frag-
ments of first-order logic is to add extra axioms. This strategy
was first pursued by Kuusisto and Lutz [2018] who showed
that the fragment obtained by adding a single functionality
axiom to FO2 is domain-liftable.4 Later works extended do-
main liftability to the fragments C2 + Tree [Van Bremen and
Kuželka, 2021] and C2 + LinOrder [Tóth and Kuželka,

4This fragment is contained in C2, which can encode an arbitrary
number of functionality constraints.

2023], which are obtained by adding to C2 an axiom that
specifies that a distinguished relation R should correspond
to an undirected tree or to a linear order, respectively. Very
recently, a new result [Malhotra and Serafini, 2023] added
another such class C2 + DAG, which allows restricting a
distinguished binary relation to be a directed acyclic graph.
Other Fragments. Several other fragments, orthogonal to
C2, were identified as tractable for WFOMC: S2FO2, S2RU
[Kazemi et al., 2016] and U1 [Kuusisto and Lutz, 2018]. Any
of these fragments can also be extended by constraints on car-
dinalities of relations using techniques from [Kuželka, 2021].
Handling Evidence. We mentioned that there is, in gen-
eral, no hope to obtain a WFOMC algorithm running in poly-
nomial time in the size of the formula even for simple frag-
ments such as FO1 or FO2. In Example 4, we constructed
a formula whose size grows with the size of the domain and
claimed that it will allow us to perform sampling in polyno-
mial time. So what is going on here? It turns out that, e.g.,
for FO2, one can add arbitrary long conjunctions of ground
unary atoms while still guaranteeing runtime polynomial in
the domain size [Van den Broeck and Davis, 2012] and, in
fact, one can also show that this holds for any tractable frag-
ment that contains C2 (both for counting and sampling).

3 Tractable Sampling
While non-exact sampling methods such as Gibbs sampling
have been studied and used a lot in statistical relational learn-
ing, exact first-order logic sampling has received significantly
less attention. In the two recent papers [Wang et al., 2022;
Wang et al., 2023], we introduced the exact weighted first-
order model sampling problem (WFOMS): Given a sentence
Ψ and two non-negative weighting functions w and w, the
WFOMS task is to sample a model ω of Ψ with proba-
bility proportional to its weight W (ω,w,w), which is de-
fined as in Definition 1. We also introduced the notion of
domain-liftability under sampling as a natural generalization
of domain-liftability for WFOMC and showed that FO2 is
domain-liftable under sampling and that this remains to hold
even when one adds counting quantifiers and cardinality con-
straints [Wang et al., 2023].

One might naively expect that WFOMS could be solved
efficiently for all sentences with domain-liftable WFOMC by
applying the classical reduction from counting to sampling
[Jerrum et al., 1986]. However, it turns out that such a strat-
egy does not work in the lifted setting [Wang et al., 2022]
because of the complexity of conditioning in lifted inference
[Van den Broeck and Davis, 2012]. Thus, even though we
managed to prove domain-liftability under sampling for the
two-variable fragment FO2, including counting quantifiers
and cardinality constraints, which required a rather elaborate
argument, it is currently not known whether there exists a
general reduction showing that any fragment that is domain-
liftable is also domain-liftable under sampling.

4 Applications
While lifted inference was originally conceived for inference
problems in statistical relational learning, the range of pos-
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sible applications of lifted-inference algorithms for WFOMC
and WFOMS is broader. In this section we sketch some of
them.

Combinatorics. Lifted-inference techniques are well-
suited for solving problems from enumerative combinatorics.
For instance, [Totis et al., 2023] recently introduced a
declarative domain-specific language which allows users to
specify textbook-style combinatorial problems and then also
solve them. What they focused on in this work are problems
inspired by the so-called “Twelvefold way”, promoted by
[Stanley, 1986]. As they point out, there are also simple
problems that cannot be solved by their approach. This
includes problems with circular permutations, e.g., arranging
people around a round table, or problems that involve
permutations with relative position constraints. An example
given by [Totis et al., 2023] of this kind, which cannot be
solved by their techniques, is: “Nine chairs in a row are to
be occupied by six students and Professors Alpha, Beta and
Gamma. These three professors arrive before the six students
and decide to choose their chairs so that each professor will
be between two students. In how many ways can Professors
Alpha, Beta and Gamma choose their chairs?” Incidentally,
this problem and similar ones, including those with circular
permutations, can be solved by WFOMC in the fragment
C2 + LinOrder [Tóth and Kuželka, 2023]. Moreover, the
various tractable fragments of WFOMC can be used to count
many other non-trivial structures as well, e.g., k-regular
graphs, trees with k leaves etc. [Barvı́nek et al., 2021;
Van Bremen and Kuželka, 2021]. At the same time, the
question whether all problems that can be solved by the
approach of [Totis et al., 2023] can also be solved by
WFOMC is currently open. Finally, the close connection
between WFOMC and enumerative combinatorics was used
for developing a method capable of generating a database of
integer sequences with combinatorial interpretation [Svatoš
et al., 2023] that we hope could complement the well known
OEIS database [OEIS Foundation Inc., 2023].

Samplers. Standard programming language libraries typi-
cally provide some limited support for sampling problems.
For instance, the NumPy package provides support for sam-
pling simple structures such as permutations and combina-
tions. However, when we need to sample just a bit more com-
plex structure, e.g., an undirected graph without isolated ver-
tices, we typically need to develop a sampler from scratch.
We believe that having a declarative framework based on
WFOMS would be a useful tool for programmers making
their work easier (recall also Examples 1-4). What stops us
from already building such a sampling framework based on
the current WFOMS algorithms [Wang et al., 2023] is their
practical performance, which is the focus of ongoing works
(however, it is worth recalling that these algorithms already
outperform state-of-the-art propositional model samplers on
first-order sampling problems, as shown experimentally in
[Wang et al., 2023], but there is still room for improvement).

Machine Learning. Lifted inference has primarily been
studied with machine learning applications in mind. In par-
ticular, it has been shown that lifted-inference algorithms for
WFOMC can be used to obtain polynomial-time algorithms

for maximum-likelihood learning of Markov logic networks
[Van Haaren et al., 2016; Kuželka and Kungurtsev, 2019;
Kuželka et al., 2020].5 The results on tractability of WFOMS
are quite new, so there have not been any real applications yet,
but we expect WFOMS to find use as a component in deep
generative models such as variational autoencoders [Kingma
and Welling, 2013] or as a proposal distribution in MCMC
algorithms.

5 Other Related Works
Lifted inference is a broader area than what it may seem
from the discussion in this paper, in particular, it does not
focus only on the WFOMC problem. Many works in lifted
inference focus on developing faster algorithms for factor
graphs, mostly building on the variable elimination algo-
rithm [de Salvo Braz et al., 2005; Taghipour et al., 2013;
Braun and Möller, 2016]. Also, regarding WFOMC, a very
closely related early work was [Gogate and Domingos, 2011].
Besides symmetric WFOMC that we discussed in this paper,
there is also its asymmetric variant [Gribkoff et al., 2014],
which is less tractable than the symmetric one (even FO2 is
intractable for it).

As for (W)FOMC, an interesting recent development ap-
peared in the PhD thesis [Dilkas, 2023], which shows that
domain recursion [Van den Broeck, 2011] can be extended in
a way that allows finding symbolic solutions for some FOMC
problems. Another interesting direction is the extension of
lifted-inference techniques for weighted first-order model in-
tegration [Feldstein and Belle, 2021], which can be used for
inference in probabilistic models that contain both discrete
and continuous random variables.

There is also a sizeable body of literature on propositional
model counting and sampling [Gomes et al., 2021; Meel,
2022]. Even though it is theoretically possible to use propo-
sitional counters and samplers for tractable first-order sam-
pling and counting problems, quite naturally, propositional
counters and samplers do not match the performance of lifted
algorithms on these problems (e.g. [Van den Broeck, 2011;
Wang et al., 2023]).

6 Conclusions and What Is Next?
In this paper we discussed recent works on lifted algorithms
for weighted first-order model counting and sampling. We
also described possible applications of these methods which
seem to be on the horizon. So what should be next? We men-
tion just a few things here. First, there is likely still scope
for extending the tractability frontiers. Second, most works
on lifted inference have so far focused on identifying frag-
ments of first-order logic for which WFOMC (or WFOMS)
can be computed in time polynomial in the domain size, but
less attention has been given to the degree of these polynomi-
als, which is as important if we want to use lifted inference
for practical applications. Finally, is it the case that all (rea-
sonable) fragments tractable for WFOMC are also tractable
for WFOMS?

5Apart from lifted-inference, this relies on fundamental results
about maximum-entropy distributions obtained surprisingly only re-
cently [Singh and Vishnoi, 2014; Straszak and Vishnoi, 2019].
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[Kuželka, 2021] Ondřej Kuželka. Weighted first-order
model counting in the two-variable fragment with count-
ing quantifiers. Journal of Artificial Intelligence Research,
70:1281–1307, 2021.

[Malhotra and Serafini, 2023] Sagar Malhotra and Luciano
Serafini. Weighted first order model counting with directed
acyclic graph axioms. https://arxiv.org/abs/2302.09830,
2023.

[Meel, 2022] Kuldeep S. Meel. Counting, sampling, and
synthesis: The quest for scalability. In Proceedings of
the Thirty-First International Joint Conference on Artifi-
cial Intelligence, IJCAI, pages 5816–5820. ijcai.org, 2022.

[OEIS Foundation Inc., 2023] OEIS Foundation Inc. The
on-line encyclopedia of integer sequences. http://oeis.org,
2023. Accessed: 2023-05-01.

[Poole, 2003] David Poole. First-order probabilistic infer-
ence. In IJCAI-03, Proceedings of the Eighteenth Inter-
national Joint Conference on Artificial Intelligence, pages
985–991, 2003.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Early Career Track

7024

https://arxiv.org/abs/2302.09830
http://oeis.org


[Singh and Vishnoi, 2014] Mohit Singh and Nisheeth K
Vishnoi. Entropy, optimization and counting. In Proceed-
ings of the forty-sixth annual ACM symposium on Theory
of computing (STOC), pages 50–59. ACM, 2014.

[Stanley, 1986] Richard P Stanley. What is enumerative
combinatorics? In Enumerative combinatorics, pages 1–
63. Springer, 1986.

[Straszak and Vishnoi, 2019] Damian Straszak and
Nisheeth K Vishnoi. Maximum entropy distribu-
tions: Bit complexity and stability. In Conference on
Learning Theory, pages 2861–2891. PMLR, 2019.
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