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Abstract
Robots for minimally-invasive surgery such as
steerable needles and concentric-tube robots have
the potential to dramatically alter the way common
medical procedures are performed. They can de-
crease patient-recovery time, speed healing and re-
duce scarring. However, manually controlling such
devices is highly un-intuitive and automatic plan-
ning methods are in need. For the automation of
such medical procedures to be clinically accepted,
it is critical from a patient care, safety, and regu-
latory perspective to certify the correctness and ef-
fectiveness of the motion-planning algorithms in-
volved in procedure automation. In this paper,
I survey recent and ongoing work where we de-
velop efficient and effective planning capabilities
for medical robots that provide provable guarantees
on various planner attributes as well as introduce
new and exciting research opportunities in the field.

1 Introduction
Continuum robots are biologically inspired systems com-
posed of flexible, elastic, or soft materials that allow for com-
plex bending motions. Examples include steerable needles
(needles that have the ability to change their direction while
inside tissue) [Reed et al., 2011; Alterovitz et al., 2003], and
concentric tube robots (robotic systems consisting of multi-
ple flexible tubes of different lengths and curvatures arranged
concentrically that are controlled by actuating the relative
movements of the tubes) [Gilbert et al., 2013]. Their abil-
ity to follow 3D curvilinear trajectories make them excel-
lent candidates for medical applications that require reach-
ing clinically significant targets while safely avoiding crit-
ical anatomical structures [Alterovitz and Goldberg, 2008;
Burgner-Kahrs et al., 2015]. In contrast to conventional rigid
medical instruments, medical continuum robots can minimize
a patient’s discomfort and enhance safety, providing mini-
mally invasive access to previously unreachable targets. They
have shown potential for various diagnostic and treatment
procedures such as biopsy, drug delivery, and radioactive seed
implantation for cancer therapy [Abolhassani et al., 2007].

Manual control of such devices is highly unintuitive for hu-
man operators because of kinematic constraints on their 3D

motion and the fact that the anatomical environment is highly
cluttered. Therefore, automation is crucial to fully exploit
their capabilities. Indeed, many planners have been proposed
for different tasks and different continuum robots. However
for the automation of such medical procedures to be clinically
accepted, it is critical from a patient care, safety, and regula-
tory perspective to certify the correctness and effectiveness
of the planning algorithms involved in procedure automation,
a guarantee that is typically lacking from existing planners.
To this end, in this paper, I survey recent and ongoing work
where we develop efficient and effective planning capabilities
for medical robots that provide provable guarantees on vari-
ous planner attributes as well as introduce new and exciting
research opportunities in the field.

2 Motion Planning for Steerable Needles
Steerable needles can be used to reach clinical targets for
biopsy purposes while safely avoiding obstacles such as
blood vessels. This clinical application can be modelled as
a motion-planning problem which is the problem of deter-
mining a collision-free path or trajectory for a robot to move
from its initial position to a desired goal position while avoid-
ing obstacles in its environment. Ideally, a motion-planning
algorithm should first guarantee that it will compute a so-
lution, when one exists, in finite time, or notify the user
that no solution exists. Moreover, the computed solution
should strive to maximize some objective which in our set-
ting is patient safety. This can be quantified using metrics
such as minimizing trajectory length [Favaro et al., 2018],
maximizing clearance from obstacles [Kuntz et al., 2015],
and minimizing damage to sensitive tissue [Fu et al., 2018;
Bentley et al., 2021].

Thus, a motion planner should be complete, i.e., find a so-
lution plan in a finite number of steps, if one exists, and ide-
ally should be optimal, i.e., ensure that the returned plan has
a cost (for a given cost metric) that equals the global opti-
mum. Unfortunately, no previously developed planner for
steerable needles (see, e.g., [Xu et al., 2008; Patil et al., 2014;
Pinzi et al., 2021]) offers a formal guarantee on completeness,
let alone optimality.

Some prior motion planners for steerable needles do aim
to optimize motion plan cost but they lack global opti-
mality guarantees [Liu et al., 2016; Favaro et al., 2018;
Pinzi et al., 2019; Favaro et al., 2021]. Indeed, providing
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Figure 1: Top: A medical steerable needle (cyan) is used to reach a
nodule (green) while avoiding major blood vessels (red) for biopsy
or cancer treatment. The left and right figures depicts the lung
parenchyma (where the bronchial tubes are in brown) and the liver,
respectively. Bottom: Our resolution-complete motion planner uses
search trees built using different resolutions, illustrated here in 2D. A
valid motion plan goes from the start configuration (blue dot) to the
goal point (green dot), while avoiding obstacles (red) and satisfying
kinematic constraints. The left search tree uses a coarse resolution
and fails to find a plan while the right one uses a finer resolution and
successfully generates a motion plan (yellow).

completeness and optimality guarantees for a steerable needle
motion planner is challenging in part because motion plan-
ning for steerable needles in 3D with curvature constraints is
at least NP-hard [Solovey, 2020]. Some sampling-based plan-
ners are known to be both complete and optimal, albeit those
properties are usually proven only for an asymptotic regime
where the number of samples tends to infinity [LaValle, 2006;
Salzman, 2019; Kleinbort et al., 2020]. Interestingly, recent
work has developed optimality guarantees for finite sampling,
although those results cannot be currently applied to steer-
able needles as they deal with holonomic systems [Tsao et
al., 2020; Dayan et al., 2021].

The aforementioned challenges inspired us to consider
variants of completeness or optimality relevant to medical ap-
plications. Specifically, in a series of recent papers [Fu et al.,
2021b; Fu et al., 2022], we focus on specific types of guar-
antees relevant to real-world medical applications: resolution
completeness [LaValle, 2006] and resolution optimality [Bar-
raquand and Latombe, 1993; Pivtoraiko et al., 2009]. Gen-
erally speaking, a resolution characterizes the discretization
of some space (e.g., state space, configuration space, action
space, and time). An algorithm is resolution complete if there
exists a fine-enough resolution with which the algorithm finds
a plan in finite time when a qualified solution exists, and oth-
erwise correctly returns that no such plan exists. An algo-
rithm is resolution optimal if it is resolution complete and if,
when it does return a motion plan, the plan’s cost is guaran-

Figure 2: CTR deployed via the sinus to cut a window in the skull
by following a reference path provided by a surgeon (yellow).

teed to be within a desired approximation factor of the cost of
a globally optimal qualified motion plan. We illustrate at the
bottom of Fig. 1 an example showing searches with different
resolutions for needle steering.

We first presented Resolution-Complete Search (RCS), an
efficient, resolution-complete motion planner for steerable
needles based on a novel adaptation of multi-resolution plan-
ning [Fu et al., 2021b]. Under some mild assumptions on the
system and the solution, the planner, in finite time, is guar-
anteed to find a plan as long as the problem admits a quali-
fied solution. We then extended RCS to develop RCS*, that
achieves resolution optimality [Fu et al., 2022].

We demonstrated the performance of our planners in two
clinically realistic scenarios where the needle should reach a
target while safely avoiding obstacles (e.g., blood vessels).
In the setting of (i) lung biopsy, where the needle is de-
ployed through a bronchoscope and must steer through the
lung parenchyma (the tissue of the lung outside the bronchial
tubes) and in the setting of (ii) liver biopsy, where the nee-
dle is deployed into the liver through its anterior surface and
must steer through the liver tissue. We compared in simu-
lation our planner with several other steerable needle plan-
ners and demonstrated experimentally that RCS and RCS*
outperform the state-of-the-art in terms of computation time,
success rate, and plan quality.

3 Path Following for Concentric Tube Robots
The dexterity and small diameter of Concentric tube robots,
or CTRs [Gilbert et al., 2013] enable minimally-invasive
surgery in constrained areas, such as accessing the pituitary
gland via the sinuses. For example, they can be used to cut
away a window of tissue during a procedure where the tissue
to be cut is expected to be provided by a surgeon as a path
that the CTR’s end effector should trace or follow. This can
be modelled as a path-following problem where we are given
an entire path R for the robot’s tip and are tasked with com-
puting a robot plan such that when following this plan, it’s
end effector traces R “as closely as possible” (this is formally
defined by Holladay et al. [2019]).

Although existing planners [Torres et al., 2015] enable
CTRs to reach specified points in task-space (space of a
robot’s end-effector positions), this is often insufficient—
existing path-following algorithms [Berenson et al., 2009;
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Figure 3: Example of Human anatomy inspection. Left: The CRISP
robot is composed of needle-diameter tubes assembled into a paral-
lel structure inside the patient’s body (in which a tube uses a snare
system to grip a tube with a camera affixed to its tip) and then ma-
nipulated outside the body, allowing for smaller incisions and faster
recovery times compared to traditional endoscopic tools (which have
larger diameters). Middle: The CRISP robot in simulation inspect-
ing a collapsed lung, a scenario segmented from a CT scan of a real
patient with this condition. Visualization shows the robot (orange),
the lungs (pink), and the pleural surface visible (green) and not vis-
ible (blue) by the robot’s camera sensor in its current configuration.
Right: Two example configurations with inspected POI. The CRISP
robot (orange) inspects POI (blue) on the organ surface with visible
points covered by the cone shape (yellow).

Holladay et al., 2019] have difficulty planning robustly in
the cluttered environments that arise in our medical domains
(e.g., cutting a window in the skull during brain surgery as de-
picted in Fig. 2). To this end, we introduce the NNF (Nearest-
Neighbor Fréchet) motion planner—the first planner in this
domain able to compute a trajectory that closely follows such
a task-space path [Niyaz et al., 2018].

However, our key insight is that truly performing our task
optimally requires not only robust planning but also optimiz-
ing the robot placement (namely, where the fixed based of the
robot is placed prior to the surgery). This is a critical choice
in a highly-constrained environment, given that certain place-
ments will allow the robot a greater range of motion within
the already-limited space, and thus better enable it to follow
the path with its end-effector.

Our final approach [Niyaz et al., 2019] therefore uses the
output of the NNF planner to inform a gradient-free opti-
mizer over the robot’s placement, and thus simultaneously
plans both the motions to execute and the placement to ex-
ecute them from. In order to make this approach as efficient
as possible, we also enable tight integration between the mo-
tion planner and optimizer to bound unnecessary computa-
tion. Our experiments confirm both that (i) incorporating the
choice of placement dramatically improves the ability to fol-
low a given path and (ii) tightly integrating the planner and
optimizer in this way affords our approach a significant re-
duction in compute time.

4 Inspection Planning for CRISP Robot
In certain medical applications, physicians may want to in-
spect some region of interest for diagnostic purposes com-
pleting the procedure as fast as is safely possible to reduce
costs and improve patient outcomes, especially if the patient
is under anesthesia during the procedure. For example, the
needle-diameter Continuum Reconfigurable Incisionless Sur-

gical Parallel (CRISP) robot [Anderson et al., 2017; Mahoney
et al., 2016] was suggested to assist in the diagnosis of the
cause of a pleural effusion (a serious medical condition that
can cause the collapse of a patient’s lung) by visually inspect-
ing the surface of the collapsed lung and chest wall inside the
body (see Fig. 3) [Kuntz et al., 2018]. This can modelled
as an inspection-planning problem [Almadhoun et al., 2016;
Galceran and Carreras, 2013] where we are given a robot
equipped with a sensor and a set of points of interest (POI)
in the environment to be inspected by the sensor. The prob-
lem calls for computing a minimal-length motion plan for the
robot that maximizes the number of POI inspected.

Naı̈vely computed inspection plans may enable inspection
of only a subset of the POI and may require motion plans
significantly longer than an optimal plan, and hence may be
undesirable or infeasible due to time constraints. Our goal
is to compute kinematically feasible collision-free inspection
plans that maximize the number of POI inspected, and of the
plans that inspect those POI we compute a shortest one.

Inspection planning is computationally challenging be-
cause we need to simultaneously reason both about mo-
tion planning in a high-dimensional configuration space X
(the space of all parameters that determine the shape of the
robot) [LaValle, 2006] as well as about maximizing the num-
ber of POI inspected.

There are multiple approaches to computing inspection
plans. Optimization-based methods locally search over the
space of all inspection plans [Bircher et al., 2015; Bogaerts
et al., 2018]. Decoupled approaches first independently se-
lect suitable viewpoints and then determine a visiting se-
quence, i.e., a motion plan for the robot that realizes this se-
quence [Englot and Hover, 2011]. Finally, recent progress in
motion planning [Karaman and Frazzoli, 2011] has enabled
methods to exhaustively search over the space of all motion
plans [Bircher et al., 2017; Kafka et al., 2016] thus guaran-
teeing asymptotic optimality. Roughly speaking, asymptotic
optimality for inspection planning means these methods pro-
duce inspection plans whose length and the number of points
inspected will asymptotically converge to those of an optimal
inspection plan, given enough planning time.

Of all the aforementioned methods, only algorithms in the
latter group provide any formal guarantees on the quality of
the solution. This guarantee is achieved by attempting to ex-
haustively compute the set of Pareto-optimal inspection plans
embedded in X for which full coverage has not been ob-
tained. Namely, for every configuration x ∈ X , they (asymp-
totically) compute the set of paths Πx starting from a given
start configuration xs such that ∀π1, π2 ∈ Πx, either π1 is
shorter than π2 and π2 covers POI not covered by π1 or vice
versa. Once Πx contains a path π∗

x that covers all POI, this
path is considered as a candidate solution. In our setting, the
set of Pareto-optimal inspection plans is the minimal set of
inspection plans such that each plan is either shorter or has
better coverage of the POI than any other inspection plan.1

1More formally, an inspection plan P connecting two configu-
rations q,q′ ∈ X is said to be Pareto optimal in our setting if any
other plan connecting q to q′ is either longer or does not inspect a
point visible to P .
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Unfortunately, this comes at the price of very long computa-
tion times as the size of the search space is exponential in the
number of POI.

To this end, we introduce Incremental Random
Inspection-roadmap Search (IRIS), an asymptotically
optimal inspection-planning algorithm [Fu et al., 2019;
Fu et al., 2021a]. IRIS incrementally constructs a sequence
of increasingly dense roadmaps—graphs embedded in X
wherein each vertex represents a collision-free configu-
ration and each edge a collision-free transition between
configurations—and computes an inspection plan on the
roadmaps as they are constructed.

Unfortunately, even the problem of computing an opti-
mal inspection plan on a graph (and not in the configuration
space) is computationally hard. To this end, our key insight is
to compute a near-optimal inspection plan on each roadmap.
Namely, we compute an inspection plan that is at most 1 + ε
the length of an optimal plan while covering at least p-percent
of the number of POI (for any ε ≥ 0 and p ∈ (0, 1]). This
additional flexibility allows us to improve the quality of our
inspection plan in an anytime manner, i.e., the algorithm can
be stopped at any time and return the best inspection plan
found up until that point. We achieve this by incrementally
densifying the roadmap and then searching over the densi-
fied roadmap for a near-optimal inspection plan—a process
that is repeated as time allows. By reducing the approxima-
tion factor between iterations, we ensure that our method is
asymptotically optimal.

The key contribution of this work is a computationally effi-
cient algorithm to compute provably near-optimal inspection
plans on graphs. Coupled with our method for generating this
graph, this algorithmic building block enables us to dramat-
ically outperform Rapidly-exploring Random Tree Of Trees
(RRTOT) [Bircher et al., 2017]—a state-of-the-art asymptot-
ically optimal inspection planner. Specifically, we demon-
strated the efficacy of our approach in simulation for several
complex robotic systems (Fig. 3).

5 Summary and Future Work
In this paper we reviewed several algorithmic planning prob-
lems (motion planning, path following and inspection plan-
ning) and demonstrated their applicability and dedicated so-
lutions for minimally invasive robot surgery that come with
some guarantees. We continue to briefly introduce new and
exciting research opportunities in the field.

Task Inspection Planning In semi-autonomous
minimally-invasive robotic surgery we have one robot
tele-operated by a surgeon who is tasked with suturing or
removing a tumor while a second, fully autonomous robot,
is in charge of autonomously providing the surgeon with
visual feedback on the progress of the task. This can be
modelled as a task inspection planning where we are given
two robots: one, which we call the task robot, that is in
charge of performing a given task, and the second, which we
call the inspection robot, is in charge of inspecting the task
as performed by the task robot using on-board sensors.

This problem is not new [Robin and Lacroix, 2016] how-
ever it is typically considered in the adversarial setting where

the inspection robot is required to avoid being observed by
the inspection robot. Our version bares resemblance to the
path following and inspection-planning problems we men-
tioned and we anticipate that the algorithmic building blocks
developed for these problems will serve as foundations to
solving the task-inspection planning problem. However, a
unique challenge we foresee in addressing this problem is
robustness—computing a path that is robust to execution un-
certainty of both robots while guaranteeing that the task is
indeed inspected.

Therapy Planning As steerable medical devices become
more capable of taking expressive paths, they unlock the
door for therapy delivery in ways not previously possible.
This may include drug-based therapies such as gene ther-
apy compounds [Lonser et al., 2020] and cellucidal com-
pounds [Vogelbaum and Aghi, 2015], or energy-based ther-
apy such as laser/radiofrequency ablation [Ashraf et al., 2018;
Shimamoto et al., 2019; Voges et al., 2018]. Automating the
planning of such therapy for straight-line paths of medical
devices is itself a challenging problem [Zhang et al., 2019],
and considering non-straight paths only adds complexity.

We believe that these are fundamentally coupled problems:
Planning how to deliver therapy (e.g., pose and volume of
liquid drug delivery, or pose, intensity, and duration of en-
ergy delivery) and planning how the steerable device moves
to those locations must be considered in concert. We deem
this problem the therapy planning problem.

Preliminary, we are abstracting the therapy planning prob-
lem as a multi-criteria optimization problem in which we
must simultaneously consider objectives that incorporate the
delivery of therapy to the intended tissue, the delivery of ther-
apy to unintended tissue, some cost associated with moving
the robot to the therapy delivery poses, and potentially other
medical objectives (e.g., total time under anesthesia, etc.).

This is an extremely complex problem. Modeling the ther-
apy involves potentially non-uniform dispersion of drug or
diffusion of energy [Knavel and Brace, 2013]. Modeling the
motion of the robot itself is complex for the reasons listed
above, and multi-criteria optimization is inherently complex
itself as well (see, e.g., [Salzman et al., 2023]).
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[Kafka et al., 2016] Přemysl Kafka, Jan Faigl, and Petr
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