
AI Planning for Hybrid Systems

Enrico Scala
University of Brescia
enrico.scala@unibs.it

Abstract
When planning the tasks of some physical entities
that need to perform actions in the world (e.g., a
Robot) it is necessary to take into account quite
complex models for ensuring that the plan is ac-
tually executable. Indeed the state of these systems
evolves according to potentially non-linear dynam-
ics where interdependent discrete and continuous
changes happen over the entire course of the task.
Systems of this kind are typically compactly repre-
sented in planning using languages mixing proposi-
tional logic and mathematics. However, these lan-
guages are still poorly understood and exploited.
What are the difficulties for planning in these set-
tings? How can we build systems that can scale
up over realistically sized problems? What are the
domains which can benefit from these languages?
This short paper shows the main two ingredients
that are needed to build a heuristic search plan-
ner, outline the main impact that such techniques
have on application, and provide some open chal-
lenges. These models and relative planners hold
the promise to deliver explainable AI solutions that
do not rely on large amounts of data.

1 Introduction
Automated Planning is one of the fundamental pillars of Arti-
ficial Intelligence. Provided some world model, AI Planning
enables an agent operating in some environment to achieve
a goal by executing actions. There are various classes of
models that can be adopted [Ghallab et al., 2004] varying on
the accurateness of representation. When we are planning
the tasks of some physical entities however, we want these
models to be rather accurate. This increases the likelihood of
success; i.e., at execution time, the planned actions becomes
actually executable, and the goal reached at the end. Mod-
ern AI Planning languages provide quite a range of modeling
features to address these questions. For instance, in PDDL+
[Fox and Long, 2006], it is possible to describe how a system
behaves according to a set of differential equations, and ex-
plicitly indicates how the agents’ actions affect the dynamics
when executed. This kind of representation is as accurate as
the actual physics describing the phenomena is.

While these powerful languages provide a nice account
from a knowledge representation perspective, the underlying
decidability issues coming from the introduction of numeric
state variables [Helmert, 2002] make them quite challeng-
ing. So much, that other researchers propose black-box al-
gorithms based on Reinforcement Learning (RL) [Corso et
al., 2021], instead. However, despite the success of RL and
machine learning we argue that it is still interesting to look
at approaches that solve these problems mainly by reasoning,
in a model-based manner. This is crucial if we lack data and
want to have explanation guarantees [Goebel et al., 2018]

In this paper I share my personal experience on solving
planning problems for hybrid systems using a model-based
approach that does heuristic search. I show the two needed
ingredients: 1. The design of a best-first search algorithm that
can work with representations with spontaneous/controllable
numeric changes and general numeric expressions 2. The de-
sign of relaxation-based heuristics that are sensitive to the hy-
brid (numeric and logical) structure of the problem. We show
how planning in hybrid systems can be cast as a sequential
decision problem provided some time discretisation. Then
we see what planning heuristics can be defined in a way to
be able to effectively guide search. Then we outlook at the
impacts that these techniques have had on applications and
systems, and conclude with a number of open challenges.

2 Planning Problems over Hybrid Systems
A hybrid system consists of a continuous and a discrete dy-
namics that model the evolution of a controllable physical
system such as a robotic system or a production plant [Hen-
zinger, 2000; Doyen et al., 2018]. The continuous part of
the model is commonly expressed using time-derivatives over
state variables. For instance, we can say that the robot posi-
tion evolves over time according to speed, i.e., ẋ = v, and that
speed itself evolves according to acceleration, i.e., v̇ = a.

Hybrid systems are represented by the AI Planning com-
munity using a formalism based on first-order-logic, and
centred around the idea of an agent that can perform ac-
tions in the world, which itself behaves according to pro-
cesses and events. The standard de facto language used
to express such problems is PDDL+ [Fox and Long, 2006;
Haslum et al., 2019], a (much) extended version of STRIPS
[Fikes and Nilsson, 1971], the historical planning language
proposed since the very early ages of the Artificial Intelli-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Early Career Track

7045



gence field. Intuitively, in PDDL+, processes dictate the dif-
ferential equations governing the system, events formalises
discrete changes that can happen in the environment; ulti-
mately, actions formalises what the agent can do. Processes,
events and actions are mathematically represented as pairs
of condition and effects. Conditions are first-order formulas
over numeric and propositional terms. For instance, assume
that the truth of a Boolean variable t models whether task t is
done, and x and y the coordinate of an agent operating in an
environment. The formula (x2 + y2 < 5) → (t = ⊤) can be
used to model that when an agent occupies any position in the
circle x2+y2 = 5, then task t has to be already done. Effects
are what formalises changes. In processes, effects are sets of
time-derivative functions. In events and actions, effects are
assignments of the form x := ξ where ξ is a mathematical ex-
pressions over the state variables. When an event is triggered,
or an action is executed, the state is transformed according to
given effects. Whereas processes and effects cause state tran-
sitions as soon as their conditions are met, actions are agent’s
decision, and the associated conditions represent when such
decisions can be taken. A planning problem in the context of
a hybrid system is the task of looking for a timed plan of ac-
tions given some specifics on the initial state and a goal to be
reached, which is itself a formula that needs to be satisfied.
The validity of a plan depends on a number of intertwined
conditions, which makes the problem quite involved. First
and foremost, all actions have to be applicable in each state
at the time in which they are planned, and the goal reached
at some instant in the future. Therefore, we need to check
whether an action condition or goal is satisfied at some time
instant and at the same time consider the exact state of the
system at that instant, whose valuation depends on the effect
of what prescribed by the processes and events, and the ef-
fects of all previous actions. For instance, consider to have
a process modeling that position x of the agent changes by 1
unit every second. After ten seconds the position goes from,
say 0 to 10. Now imagine to have an action that switches
a flag initially set to false to true (necessary in the goal), and
imagine such an action being executable when x ≥ 4∧x ≤ 6.
Executables and goal reaching plans are only those where the
action is applied at a time within 4 and 6 seconds.

Most successful planners focuses on discrete-time [Per-
cassi et al., 2023]. In other words, differential equations
are approximated through simulation and planners involved
in a discretise and validate loop [Penna et al., 2009]. Un-
der this setting, next section shows how these problems can
be solved through a best-first search approach. Intuitively,
best-first search incrementally looks into the future branch-
ing over time passing or action decisions. This breaks the
loop of dependencies between processes, actions and events
in the search for a valid plan leading to the goal.

3 Best-First Search in Hybrid Systems
Best-First Search (BFS) is a general approach for searching
solutions to combinatorial problems. BFS is widely used in
automated planning and serves as a search engine in many
state-of-the-art planning systems (e.g., LAMA [Richter and
Westphal, 2010], various incarnations of Fast Downward

[Helmert, 2006], FF [Hoffmann and Nebel, 2001]). BFS al-
gorithm operates alternating between two main operations on
a frontier holding the possible futures that can be reached
through some chain of actions. These two operations are:
node expansion and node generation.

During the expansion phase, the BFS algorithm selects a
node from the frontier, evaluates it based on a certain met-
ric, and checks if it represents a goal state. If it does, the
algorithm can just terminate reporting the path all the way to
such a state. During the generation phase instead, a BFS al-
gorithm is responsible for generating those successor nodes
associated with states reachable from the node just popped
from the frontier. Generally, BFS exploits a successor func-
tion that establishes what can be reached by some action.
The distinguishing factor among different BFS algorithms
lies in how the frontier evolves over time. This refers to
the order in which nodes are selected for expansion, and
can be summarised by saying that a BFS algorithm takes
an input a function f mapping a state to a numeric value.
At expansion time, BFS pops the node with the lowest f -
value. f can be instantiated in different ways: distance from
the initial state, estimated distance to the goal, or the al-
gorithm itself can be made more sophisticated with multi-
ple frontiers [Richter and Westphal, 2010]. A specific in-
stance of a BFS algorithm is A* [Dechter and Pearl, 1985;
Felner, 2011]. In A*, each node n is evaluated using a func-
tion f(n) = g(n)+h(n), where g(n) represents the cost from
the initial state to node n, and h(n), the heuristic function, is
an estimate of the distance from node n to the goal.

In the planning context, BFS is often set as a forward
search: start from the initial state and continue until a state
satisfying the goal conditions is reached. For each state, the
actions applicable in that state define the successor function.
In planning for hybrid systems, it is possible to apply the
aforementioned BFS algorithms using the so called theory of
waiting [McDermott, 2003]. The idea is quite simple and
follows a very similar schema to what used for classical plan-
ning. Indeed, at each state of the search, we have a complete
observability of the world, and therefore can determine each
variable value. With this, we can check whether a state satis-
fies a formula by a simple propagation of the values. Indeed,
assuming a tree-shaped formula we can evaluate it bottom-up
by substituting each variable x with the value held by x in a
state, and apply well known concepts from logic to determine
whether a node of the tree evaluates to true or false. With this
mechanism, from each state we know all applicable actions
(those having the root condition true), and can then generate
a number of successor nodes, each associated to the state re-
sulting from the execution of a given applicable action. Since
hybrid problems are temporal problems, we need to have a
way to see what happens if we let time move forward. This is
handle by i) decorating a state s with a time variable that spec-
ifies when s is valid ii) generating a time passing successor
node that represents the system waiting for some δ time. This
successor node will be associated to a state computed by up-
dating all variables affected by the processes and events. For
instance, let p0 and p1 be two processes stating that the two
variables x0 and x1 evolve according to ẋ0 = z0 ẋ1 = z1,
if we assume a discretisation δ = 1, the search generates a

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Early Career Track

7046



successor with x0 and x1 incremented by z0 × δ, and z1 × δ.
Note that, for a given set of processes, there is an exponen-

tial number of processes that can be possibly true, but a BFS
only explores subsets reachable and relevant for the goal. Yet,
the downside of this schema is in the approximation of the
time-derivatives. The dynamics is computed via simulation
rather than exact computation. Even though we can make the
simulation quite fine, e.g., δ = 0.0001, a better approach is to
use a differential integrator; work is yet still needed to under-
stand the actual benefit of this approach in terms of generality,
accurateness and effectiveness [Ramı́rez et al., 2017].

The BFS performance depends on whether the search fo-
cuses expansions along some feasible trajectory to the goal.
This can be tamed ordering the frontier using a heuristic func-
tion h defined on a relaxation of the problem. In practice we
can associate a heuristic value to each node and order the ex-
pansion to prefer those nodes associated to states closer to
the goal. We can use heuristic either in a greedy fashion (i.e.,
f(n) = h(n)) or resort to A∗. Next we show how to com-
pute heuristics systematically by transformation in sequential
numeric planning.

4 Heuristics with Numeric Changes and Goals
The first step towards the construction of a relaxation-based
heuristic function is based on the observation that a hybrid
planning problem interpreted over a discrete timeline can be
relaxed into a numeric planning problem, as those that can be
expressed using PDDL2.1 [Fox and Long, 2003]. PDDL2.1
only gives the possibility to express actions in a non tempo-
ral setting and so without processes and events. A relaxation
for this problem can be designed by assuming that processes
and events are controllable units by the agent at her will. This
is known as a process to action relaxation. This expedient
lets us use any relaxation-based heuristic for numeric plan-
ning problems under the aforementioned transformation, and
exploit relative estimates for guiding the search for a plan for
the un-relaxed hybrid system.

Relaxation-based heuristics/relaxations for sequential nu-
meric planning can be split in three categories: constraints-
based heuristics [Piacentini et al., 2018b], subgoaling-based
relaxations (e.g., [Scala et al., 2020a]) and interval-based
heuristics [Aldinger and Nebel, 2017; Scala et al., 2016;
Hoffmann, 2003]. Constraints-based heuristics and subgoal-
ing relaxations exploit a causal and quantitative relationship
that can be defined between numeric conditions and actions.
We can capture the effort needed by some action to reach a
given numeric condition with a simple mathematical opera-
tion. This enables the use of the concept of an achiever, a
notion widely used in classical heuristics. For instance, if we
are given a goal x + y ≥ 5 and are considering an action
that increases x by 2 and decreases y by 1 unit, we need
to execute such an action 5 times if we want to make the
condition satisfied in a state where the sum between x and
y is 0. Interestingly enough, if we consider fractional exe-
cutions of the actions, the optimisation problem to look for
the cheapest achievers among a set of possible ones can be
decided in polynomial time [Scala et al., 2020a], and is such
that optimal solutions include those where we only take a sin-

gle achiever. This very simple observation turned out to be
quite effective in designing heuristics aimed at approximating
how many times an action is needed to achieve a single goal
(which can be either a numeric or a Boolean one). Indeed,
achievers can then be used to estimate the cost of reaching a
goal in a recursive setting, i.e., by regressing the conditions
against the achieving action and then add the cost of its pre-
condition. We can then estimate the cost to get to the goal
by accumulating the costs through chains of achievers that
given a conjunctive condition either pessimistically sum the
cost of each conjuncts in a condition, leading to inadmissi-
ble estimates such as hadd, optimistically take the most ex-
pensive one, leading to admissible estimates such as hmax
[Haslum and Geffner, 2000; Scala et al., 2020a], or find some
inadmissible (hmrp [Scala et al., 2020b]) or admissible trade-
off between these two extremes; for admissible heuristics,
a fruitful approach combines landmarks hlmcut [Kuroiwa
et al., 2021] and linear programs [Piacentini et al., 2018b;
Kuroiwa et al., 2022b].

However, the eager reader can recognize that subgoaling
only applies when the problem present ”simple” dynamics.
That is, dynamics where all effects of actions are constant
and additive and conditions are linear. In other words, the
action contribution does not depend on the state in which it
is applied. For instance, situations like x+ = y with y be-
ing a controllable variable set by some other action are not
supported. There are approaches extending such schemata to
linear dynamics [Li et al., 2018; Kuroiwa et al., 2022a], and
it is likely that even more complex functions could be sup-
ported. But how to do so systematically is not clear yet.

The interval-based relaxation approach tackles this prob-
lem by proposing an alternative view that, instead of look-
ing at achievers, look at reachable relaxed states. It does so
by reinterpreting the semantics of numeric planning. Instead
of treating states as specific points, interval-based relaxation
considers them as sets of intervals, one for each variable.
In other words, each variable is associated with an interval
that represents its possible values. When applying an action,
the interval for each variable is expanded to include both the
original value and the potential value resulting from execut-
ing that action in the state. The expansion of the interval is
done using the concept of convex union between intervals.
For example, let us consider a scenario where we have inter-
vals [0, 3], [1, 2], and [2, 2] representing the possible values of
variable x, y and z. Suppose we have action a increasing x
by y × z. To compute the next value of x, interval analysis
specifies that the multiplication between y and z results in the
interval [1, 4]. This interval optimistically represents the po-
tential values that can be obtained through the multiplication.
We then add this interval to the previous value of x, resulting
in [1, 7]. By taking the convex union of all intervals, we obtain
[0, 7] as the range of possible values for x if action a is exe-
cuted. Interval-based-relaxation relaxes satisfiability, too. To
check the satisfiability of a condition (necessary to check for
action applicability and goal states) each term of the formulas
is evaluated against the intervals of the variables it involves.
For instance, let us consider the numeric term y × z ≥ 8,
where the intervals associated to the variables in state s are
as follows y = [0, 5] and z = [1, 2]. Under interval-based re-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Early Career Track

7047



laxation, the condition is considered satisfied if there exists at
least one value within the evaluated interval satisfying the in-
equality. Indeed, interval [0, 10] does include a value greater
than 8, so the condition is satisfied.

Interval-based relaxation enables the construction of a
polynomial time reachability procedure and heuristics that
are guaranteed to terminate and always provide a solution if
the un-relaxed problem has one. For instance, for a class of
acyclic numeric planning problem one can use hff adapted
for numeric tasks [Hoffmann, 2003], while for general nu-
meric planning problems one can use haibr [Scala et al.,
2016]. The only requirement for haibr is to have associ-
ated interval analysis operations [Moore et al., 2009] for
each mathematical expression of interest. Interval analysis
allows a very large class of mathematical expressions, includ-
ing transcendental and trigonometric functions.

5 Applications and Planning Systems
The advancement of planning systems that can generate plans
for hybrid systems is already gaining some momentum from
an application standpoint, and we provide just a short list for
space reasons below. A seminal work in this direction is the
one by [Fox et al., 2012]. In particular, the authors show an
architecture based on a PDDL+ formulation to find policies
for a battery switching problem. Their results show that it
is possible to substantial increase the lifetime of the batteries
with the generated policy. The employed PDDL+ planner was
UpMurphi [Penna et al., 2009]. Another example is the recent
work by [Kiam et al., 2020] that shows how a PDDL+ based
approach can be used for planning a multi-UAVs scenario; the
PDDL+ aims at providing a formal account for the synchro-
nisation of a fleet of UAVs, and uses a local search procedure
to distribute goals among the agents. The PDDL+ formu-
lation not only models the shared tasks, but also make sure
that the complex dynamics of the UAVs is in check. Finally,
there is a very recent work by [Aineto et al., 2023] that shows
how to use a PDDL+ approach to find counter-examples in
safety verification problems coming from challenging indus-
trial tasks. The counter-example yields the trajectory of de-
cisions leading to a violation of a temporal constraints. The
work shows that PDDL+ is not only viable but also compet-
itive to falsification techniques based on simulations and RL
over black-boxes. These two latter applications were used ex-
ploiting ENHSP [Scala et al., 2016]. PDDL+ has also found
application in classical control problems and physics based
games such as angry birds. In this context, the work by [Pi-
otrowski et al., 2023] uses Hydra to generate actions in a so-
phisticated agent-based architecture. Other researchers have
used PDDL+, too, e.g., for traffic control [Vallati et al., 2016],
or in-station train dispatching [Cardellini et al., 2021].

Interestingly, all the aforementioned planners can be un-
derstood as instances of BFS algorithm applied in a forward
search manner over the transition system induced by the dis-
cretised hybrid system. UpMurphi does indeed a Breath-
First-Search that is an instance of BFS with priority given
to states close to the initial state (f(n) = d(n) with d(n) be-
ing the distance from initial state). ENHSP also does a BFS
equipped with different relaxation-based heuristics and prun-

ing techniques. Hydra is similar to both planners in the spirit,
but instead of adopting domain independent heuristics, fo-
cuses on the development of a system that can easily be con-
figured with custom heuristic specific for the problem at hand.
Note that BFS plus some heuristic is not the only approach
to PDDL+; for instance, others approaches use compilation
into SMT (e.g., [Cashmore et al., 2020]) or other constraints-
based formulation, for example into MIP [Piacentini et al.,
2018a]. Yet, to the best of our knowledge, none of these plan-
ners has been used into practical applications yet.

6 (Many) Open Challenges
Planning for hybrid systems still holds many open challenges.
A non exhaustive list on some research direction follows.

First and foremost, we lack a deeper understanding on the
computational complexity of many practical fragments, even
if we restrict ourselves to the discrete-time case. A big source
of complexity in planning for hybrid systems comes from the
adoption of unbounded numeric and continuous variables;
it is hard to have procedures that are guaranteed to termi-
nate over a state space that can get infinite. Yet, for sev-
eral realistic scenarios, it is more than reasonable to still use
numeric variables but have bounds on the possible values
they can ever reach. Although we are very recently start-
ing to see initial studies of these settings [Gnad et al., 2023;
Gigante and Scala, 2023], work is still needed at least to i) un-
derstand how these results transfer into practice through new
algorithms and heuristics that exploit these assumptions for
better reasoning ii) extend these works for the temporal case.
In this latter regard, the available results using time in plan-
ning are restricted to states only allowing Boolean variables
[Rintanen, 07; Gigante et al., 2022].

Secondly, as outlined in Section 4, the current relaxation-
based frameworks provide solutions mainly for two extreme
situations only. Subgoaling-based relaxation and constraints-
based heuristics [Scala et al., 2020a; Kuroiwa et al., 2021;
Piacentini et al., 2018b] put emphasis on very restricted for-
mulations where actions can at most have linear effects and
numeric terms only involve linear conditions. Interval-based
relaxation [Hoffmann, 2003; Scala et al., 2016; Aldinger and
Nebel, 2017] on the other hand, does extend the framework
for very general numeric expressions, yet is practical less ef-
ficient than the subgoaling. How to mix the them effectively
is still an open question. An interesting direction is also the
use of neural network to learn heuristic functions, a line of
research very active in other areas (e.g., [Toyer et al., 2020;
Ferber et al., 2020]).

Third, we lack work aimed at studying the adoption of tra-
jectory constraints in hybrid systems represented in PDDL+.
[Aineto et al., 2023] observed that many verification prob-
lems require planners to be able to reason using signal tem-
poral logic, which can be understood as enforcing trajectory
constraints. This subject is at the moment studied mostly
for classical planning problems [De Giacomo et al., 2014;
Bacchus and Kabanza, 1998; Baier and McIlraith, 2006;
Bonassi et al., 2021; Bonassi et al., 2022; Bonassi et al.,
2023], but completely missing when we have temporal and
numeric information to deal with.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Early Career Track

7048



Acknowledgments
This work has only been possible thanks to the people I have
worked with, and it is really not possible to cite them all. But
a special thank is due to Patrik Haslum, Miquel Ramirez and
Sylvie Thiebaux who introduced me to heuristic search, and
Diego Aineto, Nicola Gigante, Andrea Micheli, Eva Onainda,
Francesco Percassi, Ivan Serina, Mauro Vallati with whom I
more recently started to share interest for all sort of temporal
and hybrid planning problems. A big thank goes of course to
Pietro Torasso who introduced me to AI, and all the people I
work with from the University of Brescia.

References
[Aineto et al., 2023] Diego Aineto, Enrico Scala, Eva On-

aindia, and Ivan Serina. Falsification of cyber-physical
systems using pddl+ planning. In ICAPS, page to appear.
AAAI Press, 2023.

[Aldinger and Nebel, 2017] Johannes Aldinger and Bern-
hard Nebel. Interval based relaxation heuristics for nu-
meric planning with action costs. In KI, volume 10505
of Lecture Notes in Computer Science, pages 15–28.
Springer, 2017.

[Bacchus and Kabanza, 1998] Fahiem Bacchus and Frodu-
ald Kabanza. Planning for temporally extended goals. An-
nals of Mathematics and Artificial Intelligence, 22(1-2):5–
27, 1998.

[Baier and McIlraith, 2006] Jorge A Baier and Sheila A
McIlraith. Planning with first-order temporally extended
goals using heuristic search. In National Conference on
Artificial Intelligence, (AAAI-06), 2006.

[Bonassi et al., 2021] Luigi Bonassi, Alfonso Emilio
Gerevini, Francesco Percassi, and Enrico Scala. On
planning with qualitative state-trajectory constraints in
PDDL3 by compiling them away. In ICAPS, pages 46–50.
AAAI Press, 2021.

[Bonassi et al., 2022] Luigi Bonassi, Alfonso Emilio
Gerevini, and Enrico Scala. Planning with qualitative
action-trajectory constraints in PDDL. In IJCAI, pages
4606–4613. ijcai.org, 2022.

[Bonassi et al., 2023] Luigi Bonassi, Giuseppe De Giacomo,
Marco Favorito, Francesco Fuggitti, Alfonso Emilio
Gerevini, and Enrico Scala. Planning for temporally ex-
tended goals in pure-past linear temporal logic. In ICAPS,
page to appear. AAAI Press, 2023.

[Cardellini et al., 2021] Matteo Cardellini, Marco Maratea,
Mauro Vallati, Gianluca Boleto, and Luca Oneto. In-
station train dispatching: A PDDL+ planning approach.
In ICAPS, pages 450–458. AAAI Press, 2021.

[Cashmore et al., 2020] Michael Cashmore, Daniele Maga-
zzeni, and Parisa Zehtabi. Planning for hybrid systems via
satisfiability modulo theories. Journal of Artificial Intelli-
gence Research, 67:235–283, 2020.

[Corso et al., 2021] Anthony Corso, Robert J. Moss, Mark
Koren, Ritchie Lee, and Mykel J. Kochenderfer. A sur-
vey of algorithms for black-box safety validation of cyber-
physical systems. J. Artif. Intell. Res., 72:377–428, 2021.

[De Giacomo et al., 2014] Giuseppe De Giacomo, Riccardo
De Masellis, and Marco Montali. Reasoning on ltl on finite
traces: Insensitivity to infiniteness. In AAAI, pages 1027–
1033, 2014.

[Dechter and Pearl, 1985] Rina Dechter and Judea Pearl.
Generalized best-first search strategies and the optimality
of a*. J. ACM, 32(3):505–536, 1985.

[Doyen et al., 2018] Laurent Doyen, Goran Frehse,
George J. Pappas, and André Platzer. Verification of
Hybrid Systems. In Handbook of Model Checking, pages
1047–1110. Springer, 2018.

[Felner, 2011] Ariel Felner. Position paper: Dijkstra’s algo-
rithm versus uniform cost search or a case against dijk-
stra’s algorithm. In SOCS. AAAI Press, 2011.

[Ferber et al., 2020] Patrick Ferber, Malte Helmert, and Jörg
Hoffmann. Neural network heuristics for classical plan-
ning: A study of hyperparameter space. In ECAI, volume
325 of Frontiers in Artificial Intelligence and Applications,
pages 2346–2353. IOS Press, 2020.

[Fikes and Nilsson, 1971] Richard E Fikes and Nils J Nils-
son. Strips: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3-
4):189–208, 1971.

[Fox and Long, 2003] Maria Fox and Derek Long.
PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence
Research, 20:61–124, 2003.

[Fox and Long, 2006] Maria Fox and Derek Long. Mod-
elling mixed discrete-continuous domains for planning.
Journal of Artificial Intelligence Research (JAIR), 27:235–
297, 2006.

[Fox et al., 2012] Maria Fox, Derek Long, and Daniele Mag-
azzeni. Plan-based policies for efficient multiple battery
load management. J. Artif. Intell. Res., 44:335–382, 2012.

[Ghallab et al., 2004] Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning: theory and practice. El-
sevier, 2004.

[Gigante and Scala, 2023] Nicola Gigante and Enrico Scala.
On the compilability of bounded numeric planning. In IJ-
CAI, page to appear. ijcai.org, 2023.

[Gigante et al., 2022] Nicola Gigante, Andrea Micheli, An-
gelo Montanari, and Enrico Scala. Decidability and com-
plexity of action-based temporal planning over dense time.
Artif. Intell., 307:103686, 2022.

[Gnad et al., 2023] Daniel Gnad, Malte Helmert, Peter Jon-
sson, and Alexander Shleyfman. Planning over integers:
Compilations and undecidability. In ICAPS, page to ap-
pear. AAAI Press, 2023.

[Goebel et al., 2018] Randy Goebel, Ajay Chander, Katha-
rina Holzinger, Freddy Lécué, Zeynep Akata, Simone
Stumpf, Peter Kieseberg, and Andreas Holzinger. Explain-
able AI: the new 42? In CD-MAKE, Lecture Notes in
Computer Science, pages 295–303. Springer, 2018.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Early Career Track

7049



[Haslum and Geffner, 2000] Patrik Haslum and Hector
Geffner. Admissible heuristics for optimal planning. In
AIPS, pages 140–149. AAAI, 2000.

[Haslum et al., 2019] Patrik Haslum, Nir Lipovetzky,
Daniele Magazzeni, and Christian Muise. An Introduction
to the Planning Domain Definition Language. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2019.

[Helmert, 2002] Malte Helmert. Decidability and undecid-
ability results for planning with numerical state variables.
In Proc,. of International Conference on Artificial Intelli-
gence Planning and Scheduling (AIPS 2002), pages 44–
53, 2002.

[Helmert, 2006] Malte Helmert. The fast downward plan-
ning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[Henzinger, 2000] Thomas A. Henzinger. The Theory of Hy-
brid Automata. In Verification of Digital and Hybrid Sys-
tems, pages 265–292. Springer Berlin Heidelberg, 2000.

[Hoffmann and Nebel, 2001] Jörg Hoffmann and Bernhard
Nebel. The FF planning system: Fast plan generation
through heuristic search. J. Artif. Intell. Res., 14:253–302,
2001.

[Hoffmann, 2003] Jörg Hoffmann. The metric-ff planning
system: Translating ”ignoring delete lists” to numeric state
variables. J. Artif. Intell. Res., 20:291–341, 2003.

[Kiam et al., 2020] Jane Jean Kiam, Enrico Scala,
Miquel Ramı́rez Javega, and Axel Schulte. An ai-
based planning framework for HAPS in a time-varying
environment. In ICAPS, pages 412–420. AAAI Press,
2020.

[Kuroiwa et al., 2021] Ryo Kuroiwa, Alexander Shleyfman,
Chiara Piacentini, Margarita P Castro, and J Christopher
Beck. Lm-cut and operator counting heuristics for opti-
mal numeric planning with simple conditions. In ICAPS,
volume 31, pages 210–218, 2021.

[Kuroiwa et al., 2022a] Ryo Kuroiwa, Alexander Shleyf-
man, and J. Christopher Beck. Lm-cut heuristics for op-
timal linear numeric planning. In ICAPS, pages 203–212.
AAAI Press, 2022.

[Kuroiwa et al., 2022b] Ryo Kuroiwa, Alexander Shleyf-
man, Chiara Piacentini, Margarita P. Castro, and
J. Christopher Beck. The lm-cut heuristic family for op-
timal numeric planning with simple conditions. J. Artif.
Intell. Res., 75:1477–1548, 2022.

[Li et al., 2018] Dongxu Li, Enrico Scala, Patrik Haslum,
and Sergiy Bogomolov. Effect-abstraction based relax-
ation for linear numeric planning. In IJCAI, pages 4787–
4793. ijcai.org, 2018.

[McDermott, 2003] Drew V. McDermott. Reasoning about
autonomous processes in an estimated-regression planner.
In ICAPS, pages 143–152, 2003.

[Moore et al., 2009] Ramon E. Moore, R. Baker Kearfott,
and Michael J. Cloud. Introduction to Interval Analysis.
SIAM, 2009.

[Penna et al., 2009] Giuseppe Della Penna, Daniele Maga-
zzeni, Fabio Mercorio, and Benedetto Intrigila. UPMur-
phi: A Tool for Universal Planning on PDDL+ Problems.
In ICAPS, 2009.

[Percassi et al., 2023] Francesco Percassi, Enrico Scala, and
Mauro Vallati. A practical approach to discretised PDDL+
problems by translation to numeric planning. J. Artif. In-
tell. Res., 76:115–162, 2023.

[Piacentini et al., 2018a] Chiara Piacentini, Margarita P.
Castro, André Augusto Ciré, and J. Christopher Beck.
Compiling optimal numeric planning to mixed integer lin-
ear programming. In ICAPS, pages 383–387. AAAI Press,
2018.

[Piacentini et al., 2018b] Chiara Piacentini, Margarita P.
Castro, André Augusto Ciré, and J. Christopher Beck.
Linear and integer programming-based heuristics for cost-
optimal numeric planning. In AAAI, pages 6254–6261.
AAAI Press, 2018.

[Piotrowski et al., 2023] Wiktor Piotrowski, Yoni Sher,
Sachin Grover, Roni Stern, and Shiwali Mohan. Heuristic
search for physics-based problems: Angry birds in
PDDL+. CoRR, abs/2303.16967, 2023.

[Ramı́rez et al., 2017] Miquel Ramı́rez, Enrico Scala, Patrik
Haslum, and Sylvie Thiébaux. Numerical integration and
dynamic discretization in heuristic search planning over
hybrid domains. CoRR, abs/1703.04232, 2017.

[Richter and Westphal, 2010] Silvia Richter and Matthias
Westphal. The LAMA planner: Guiding cost-based any-
time planning with landmarks. J. Artif. Intell. Res.,
39:127–177, 2010.

[Rintanen, 07] Jussi Rintanen. Complexity of concurrent
temporal planning. In Proc. of International Conference
on Automated Planning and Scheduling (ICAPS-07), page
287, 07.

[Scala et al., 2016] Enrico Scala, Patrik Haslum, Sylvie
Thiébaux, and Miquel Ramı́rez. Interval-based relaxation
for general numeric planning. In Proceedings of ECAI,
volume 285, pages 655–663, 2016.

[Scala et al., 2020a] Enrico Scala, Patrik Haslum, Sylvie
Thiébaux, and Miquel Ramirez. Subgoaling techniques
for satisficing and optimal numeric planning. Journal of
Artificial Intelligence Research, 68:691–752, 2020.

[Scala et al., 2020b] Enrico Scala, Alessandro Saetti, Ivan
Serina, and Alfonso Emilio Gerevini. Search-guidance
mechanisms for numeric planning through subgoaling re-
laxation. In ICAPS, 2020.

[Toyer et al., 2020] Sam Toyer, Sylvie Thiébaux, Felipe W.
Trevizan, and Lexing Xie. Asnets: Deep learning for gen-
eralised planning. J. Artif. Intell. Res., 68:1–68, 2020.

[Vallati et al., 2016] Mauro Vallati, Daniele Magazzeni,
Bart De Schutter, Lukás Chrpa, and Thomas Leo Mc-
Cluskey. Efficient macroscopic urban traffic models for
reducing congestion: A PDDL+ planning approach. In
Proceedings of AAAI, pages 3188–3194, 2016.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Early Career Track

7050


	Introduction
	Planning Problems over Hybrid Systems
	Best-First Search in Hybrid Systems
	Heuristics with Numeric Changes and Goals
	Applications and Planning Systems
	(Many) Open Challenges

