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Abstract
Over recent decades, sequential decision-making
tasks are mostly tackled with expert systems and
reinforcement learning. However, these methods
are still incapable of being generalizable enough to
solve new tasks at a low cost. In this article, we dis-
cuss a novel paradigm that leverages Transformer-
based sequence models to tackle decision-making
tasks, named large decision models. Starting from
offline reinforcement learning scenarios, early at-
tempts demonstrate that sequential modeling meth-
ods can be applied to train an effective policy given
sufficient expert trajectories. When the sequence
model goes large, its generalization ability over a
variety of tasks and fast adaptation to new tasks has
been observed, which is highly potential to enable
the agent to achieve artificial general intelligence
for sequential decision-making in the near future.

1 Background
Solving sequential decision-making tasks is one of the ma-
jor objectives of artificial intelligence (AI) [Phillips-Wren
and Jain, 2006]. Originating in the 1950s, AI techniques
have been explored to solve various decision-making tasks
like computer checkers, chess and other games [Schaeffer
and Van den Herik, 2002]. After 70 years, AI techniques
are now applied in various complex sequential decision-
making tasks, including autonomous driving [Schwarting et
al., 2019], multi-agent game bots [Vinyals et al., 2019], dex-
terous robot manipulation [Billard and Kragic, 2019], person-
alized recommender systems [Munemasa et al., 2018], real-
time order dispatching [Li et al., 2019] etc., serving to opti-
mize the utility or efficiency of the systems by making smart
decisions.

From the perspective of technical paradigms, there are
roughly three kinds of different techniques developed for se-
quential decision-making, namely, expert systems, reinforce-
ment learning, and large decision models [Wen et al., 2022b].

Expert systems (ES) refer to the paradigm that human ex-
perts should first be knowledgeable about how to solve a
particular sequential decision-making task, then implement
the program to solve it with computers [Bohanec and Ra-
jkovic, 1990]. For example, the design of heuristic search

methods consists of the scoring function of each search node
and the search algorithm [Churchill et al., 2012]; the mixed-
integer programming (MIP) solution requires the human to
thoroughly understand the quantitative relationship between
the optimization objective and the variables as well as their
constraints, then instantiate the corresponding MIP problem
and use the solver to obtain the decision solution [Achterberg
and Wunderling, 2013]. Despite their good explainability and
controllability, the expert system methods are generally lim-
ited to the human experience and the ability to implement
the experience knowledge into the solution. Further, it is
common that for most sequential decision-making tasks, even
the human expert cannot acquire all the valuable knowledge.
Thus, expert system solutions are limited by human efforts
and upper-bounded by the known human expertise.

Reinforcement learning (RL) refers to the learning-from-
data methods for a sequential decision-making agent interact-
ing with a dynamic environment [Sutton and Barto, 2018]. In
each timestep of the interaction, the agent perceives the obser-
vation or state from the environment and computes the action
(i.e., the decision) to deliver to the environment. Then the cor-
responding reward signal as feedback is sent to the agent, and
the environment will transit to a new state and emit the new
observation to the agent in the next timestep. The learning
objective of the agent is to maximize the expected cumulative
reward over the interaction episode. Powered by deep learn-
ing, deep reinforcement learning (DRL) has achieved appeal-
ing success during the last decade [Mnih et al., 2015], includ-
ing the superhuman-level AI in Go and various games [Silver
et al., 2016; Ye et al., 2020; Brown and Sandholm, 2019],
healthcare [Yu et al., 2021], robotic control [Lee et al., 2020],
real-time bidding based advertising [Jin et al., 2018] etc.

However, reinforcement learning methods generally suffer
from the problems of low sample efficiency and poor gener-
alization upon environmental change. First, as RL requires
the agent to interact with the dynamic environment to obtain
experience data, it is likely the sampled experience data does
not help the policy improve. Thus, a variety of methods are
proposed to improve the sample efficiency of RL, including
exploration strategies, representation learning, environment
modeling and planning, and policy transfer [Yu, 2018]. How-
ever, these methods do not fundamentally address the sample
efficiency problem because of the interactive nature of RL.
Second, the policy obtained from RL is highly sensitive to en-
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vironmental change, including the reward function and state
dynamics. This is partly due to the Bellman optimality update
in temporal difference learning or dynamic programming. In
addition, the reward function is not necessarily well defined
for each sequential decision-making task, which requires the
researchers to carefully craft the reward function, but a sub-
optimal reward function would guide the policy to exploit its
loopholes and yield an unintended policy. As a result, when
facing a new sequential decision-making task, or the dynamic
environment has made a remarkable change, the policy has to
be (almost) trained from scratch, which substantially limits
the applicability of RL in the real world.

In this article, we introduce large decision models (LDMs),
a novel learning-based paradigm that is potential to address
the above challenges that RL faces. We start from the ori-
gin of LDMs in offline RL, then discuss the development in
online training, multi-agent settings as well as some typical
applications.

2 Preliminaries
A general formulation of RL policy gradient is

θ ← θ + αE(s,a)∼ρ̂µ [m(s, a)∇θ log πθ(a|s)], (1)

where θ denotes the parameters of the learning policy πθ, µ
is the behavior policy, ρ̂µ denotes the data distribution cor-
responding to µ’s occupancy measure ρµ, α is the learning
rate. m(s, a) stands for an operator on the state-action pair
(s, a). If m(s, a) is instantiated as Q(s, a) or A(s, a), then
Eq. (1) corresponds to actor-critic methods. If m(s, a) is val-
ued as the return right after (s, a) in a trajectory, then it cor-
responds to the REINFORCE method. In a multi-agent case,
m(s, a) can be a credit assigner to the particular agent for its
action a at the state s in a group cooperation scenario. An
extreme case is when m(s, a) = 1 for all state-action pairs,
then it corresponds to self-imitation of the behavior policy µ.
Self-imitation offline or off-policy RL. In offline or off-
policy reinforcement learning, the self-imitation methods re-
fer to reweighting the state-action pairs or resampling them
from the batch or replay buffer according to value estimation,
and then performing supervised learning [Peng et al., 2019;
Wang et al., 2020; Chen et al., 2020]. Such a method en-
joys the advantages of stable supervised learning from the
reweighted (or sampled) state-action pairs and easy imple-
mentation. Generally, self-imitation would yield better ef-
ficacy if the batch experience data is more diverse. Srivas-
tava et al. [2019] proposed a framework called upside-down
RL, in which, instead of learning any action value function
Q(s, a), a behavior function B(s, c) that takes the current
state s and the command c (or goal) and outputs the action
towards completing the commend (or achieving the goal) is
trained via supervised learning. For Markovian state transi-
tions, the behavior function can be simply a multi-layer per-
ceptron or convolutional networks. The command c can be
defined as the return to achieve and left horizon.
Sequence modeling in offline RL. For upside-down RL
[Srivastava et al., 2019], if the input is non-Markovian ob-
servations, it is straightforward to use a recurrent neural net-
work (RNN) to implement the behavior function. Thus, the

learning of the behavior function becomes a sequence mod-
eling problem. Further, it is straightforward to replace the re-
current neural network with Transformer architectures. Com-
pared to RNN, the Transformer architecture has the following
advantages when performing decoding. First, the recurrence
function is not used in Transformer, making it always work
on the input data and thus suffering from lower compounding
errors. Second, the positional encoding used in Transformer
makes it aware of the decoding timestep, which is unavailable
in RNN.

Decision Transformer (DT) [Chen et al., 2021] is a re-
markable work on sequence modeling in offline RL. In DT,
a casual (decoder-only) Transformer is used to implement the
policy. The input data is a sequence of three tokens, i.e.,
return-to-go, observation, and action. An encoder is trained
to project the data of each modality into the embedding space.
Taking the data of previous steps, the return-to-go and the ob-
servation of the current step as input, DT predicts the action
taken in the offline data. Note that the return-to-go in DT acts
like the command used in upside-down RL, which is analo-
gous to the goal in goal-conditional RL [Liu et al., 2022].

Trajectory Transformer (TT) [Janner et al., 2021] uses
causal Transformer to model the whole experience sequence,
predicting the observation, action, and reward of each step.
As such, TT can be used as a world model and perform
planning to select good action via beam search. Different
from DT, TT employs a dimension-wise discretization pro-
cess, which makes the vocabulary size smaller but the expe-
rience sequence much longer.

Taking back to TD learning, i.e., m(s, a) in Eq. (1) is the
Q(s, a) function, the learning of Q function via standard tem-
poral difference is like Q(s, a) ← Q(s, a)(1 − α) + α(r +
γQ(s′, a′)), where a′ is chosen by the learning policy or via
a max operation. It is easy to see the message passing via TD
learning is of low-efficiency, and the attribution of success
is non-explicit. By contrast, for sequence modeling meth-
ods like DT, m(s, a) = 1 for all state-action pairs. The at-
tribution of action taken can be explicitly modeled via the
self-attention layers of Transformer architecture and the con-
ditioned return-to-go signal.

3 Large Decision Models
In natural language processing (NLP), large language models
(LLMs) refer to Transformer-based models with a vast num-
ber of parameters, e.g., BERT [Kenton and Toutanova, 2019]
and GPT [Brown et al., 2020]. Besides the large parameter
size, LLMs as the foundation models of NLP have the abil-
ity to perform multi-task learning [Radford et al., 2019] and
few-shot adaptation [Brown et al., 2020]. Analogously, in
reinforcement learning tasks, large decision models (LDMs)
refer to large parameter-size models that i) are able to han-
dle multiple decision-making tasks simultaneously and ii) can
adapt to new tasks with a zero-shot or few-shot sample cost.
Just like LLMs, so far the LDMs we have observed are mostly
based on Transformers.

Generally, an LDM achieves multi-task handling and few-
shot adaptation in the following ways, as shown in Figure 1.
First, the training algorithm of an LDM is typically just su-
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Figure 1: The workflow of large decision models.

pervised learning, which is not directly related to the reward
signal. Specifically, the trajectory experience data is selected
based on the task-level success indicator or the whole return
of the trajectory. Then the learning of the model is purely
based on predicting the action at each step given the previ-
ous information of the trajectory, which is just like behavior
cloning. Thus, LDMs naturally get rid of the problem of re-
ward sensitivity. Second, after the trajectory data selection,
the learning task itself is sequence modeling, i.e., predicting
the “expert” actions in the selected trajectory data. As the net-
work architecture of LDMs is always GPT and its variants,
which thus inherit the merits of GPT as multi-task learners
and few-shot learners in sequence modeling. In the remaining
part of this section, we will discuss several important LDMs
from the aspects of data processing, model architecture, train-
ing scheme, and generalization ability.

Gato [Reed et al., 2022] is a remarkable large decision
model released by DeepMind in May 2022. Gato raises a uni-
fied data processing and model learning framework, which
enables the LDM to work on 604 tasks. For the trajectory
selection scheme, Gato chooses to filter out the low-return
trajectories and only keep the trajectories with at least 80%
of the expert return for that task, where the expert policy can
be obtained via training the agent with a deep reinforcement
learning method. Note that the expert policy can be regarded
as overfitting the particular task and cannot transfer to other
tasks. For the trajectory data processing scheme, Gato dis-
cretizes the data of different modalities into sequences of to-
kens, which are then mapped as sequences of embeddings.
Specifically, the text and discrete data are directly embed-
ded; the tensor data is mu-law encoded and discretized, then
embedded; the images are split into patches, each of which
is transformed as embeedings via ResNet [He et al., 2016].
Gato utilizes task prompts to manage the complexities of
various tasks. During training, 25% of the sequences in a
batch are introduced with a prompt sequence that originates
from the same source agent and task episode. In the evalua-
tion phase, a successful demonstration of the intended task is
added at the beginning.

For the model training, Gato unifies the training of each
task in a masked sequence modeling framework as

θ ← θ + α
∑
τ∈B

∑
(s,a)∈τ

m(s, a) log πθ(a|s), (2)

where each trajectory τ = [x1, x2, . . . , xT ] is a sequence of
discretized tokens in the training batch B, the so-called state-

action pair (s, a) = ([x1, . . . , xt−1], xt) is indeed the pre-
ceding tokens and the current token at timestep t, m(s, a) is
the masking operator that specifies the token to be predicted
(when m(s, a) = 1) or not (when m(s, a) = 0) depending
on the task setting. In such a way, trajectory selection, data
processing, and model learning from different tasks can be
handled in the unified Gato framework. For policy instan-
tiation πθ, Gato employs a decoder-only transformer model,
which consists of 24 layers and 1.18 billion parameters. It
uses an embedding size of 2048 and a hidden size of 8196 in
the post-attention feedforward network.

Gato is trained and evaluated on 596 control tasks and 8
vision/language tasks, in 450 of which Gato surpasses the
50% expert score threshold. Such a performance demon-
strates that Gato is a high-potential generalist agent across a
large number of decision-making tasks. After the foundation
model is pre-trained, Gato can be fine-tuned with less than
100 episodes to improve performance close to the expert’s,
which demonstrates Gato’s adaptation ability to new tasks.

DB1 [Wen et al., 2022b] is a follow-up replication and
validation work based on Gato. Compared to Gato, DB1
directly uses Transformer-XL architecture during training,
adopts PostNorm layer normalization, and employs mixed-
precision for attention computation to improve numerical sta-
bility. The number of handled tasks is 870 for DB1, where the
traveling salesman problem (TSP) with 100-200 node scales,
an NP-hard combinatorial optimization problem, is also in-
cluded as a type of tasks. In 651 of the 870 tasks, DB1 sur-
passes the 50% expert score threshold.

Note that as both Gato and DB1 are partially pre-trained on
natural language, they naturally work on language input. It is
worth trying that task instructions can be used as the prompt
prepended to the trajectory data during training, although this
was not done on both LDMs. Thus, it is expected that such
LDMs would be capable of understanding new task instruc-
tions for known or similar new tasks and taking actions with
good generalization.

Not all LDMs are just trained with simple supervised learn-
ing methods; they can also be trained with online reinforce-
ment learning methods. For example, AdA [Team et al.,
2023] is an LDM based on Museli learning algorithm with a
Transformer-XL architecture. Different from Gato and DB1,
AdA is trained with the meta-RL method at scale in an open-
ended task space with an auto-curriculum scheme to priori-
tize tasks at the frontiers of AdA’s capabilities, which gives
AdA a fast adaptation ability comparable to humans. Further,
LDMs are recently extended to build dynamics models to en-
able model predictive control [Schubert and others, 2023].

Besides single-agent tasks, preliminary attempts to enable
LDMs to work on multi-agent coordination have been made.
Comparing to the single-agent setting, in multi-agent sys-
tems, each agent is learning and updating its policy. Thus,
from each agent’s perspective, the environment is varying
across time, i.e., non-stationary, which makes multi-agent RL
more challenging [Lowe et al., 2017], let alone the changes
of the environment and task. Multi-agent decision Trans-
former (MADT) [Meng et al., 2021] is an early work that uses
one causal Transformer to tackle various settings of multi-
agent RL tasks based on SMAC tasks, i.e., the generalization
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and adaptation across different multi-agent teams, offline pre-
training and online finetuning, and multiple downstream tasks
with zero-shot or few-shot learning costs. In the offline pre-
training stage, MADT formulates the trajectory data of each
agent as the sequence of (global state, local observation, ac-
tion) and trains a parameter-sharing policy for each agent via
predicting the action at each time step conditioning on pre-
vious information and a centralized critic that estimates the
value of given the global state. In the online finetuning stage,
each agent is initialized with the shared pretrained policy and
uses the centralized critic and reward signal to calculate ad-
vantages to build a PPO method [Schulman et al., 2017] to
finetune the policy.

Multi-agent Transformer (MAT) [Wen et al., 2022a] fo-
cuses on the orthogonal dimension compared to MADT, i.e.,
expanding the agent set as a sequence and building a sequence
model to explore the interaction patterns across agents and
generate the agent actions in an autoregressive manner at each
timestep. With such a sequence modeling architecture, MAT
works seamlessly over a varying number of agents. Unlike
MADT which largely relies on pretraining over the offline
dataset, MAT is trained online. Although it does not evaluate
multi-task generalization, MAT demonstrates excellent zero-
shot and few-shot adaptation to unseen multi-agent RL tasks
on SMAC and MuJoCo tasks.

4 Applications of LDMs
With the advantages of wide generalization and low-cost
adaptation to new environments or tasks, it is appealing to
apply large decision models to various scenarios. Practically,
there are two major implementation paradigms for LDMs de-
pending on the application settings.

• LDMs for general control (GC). Based on the foundation
model trained on control scenarios, e.g., robotic manipu-
lation, locomotion, and game playing, the control policy
can be finetuned with a low sample cost from the target
task. The fundamental ability comes from the knowledge
learned via interacting with the environment dynamics.

• LDMs based on language backbone (LB). Based on a
pretrained large language model like ChatGPT, the agent
could (i) interact with humans via language, (ii) interact
in a language-based environment, e.g., dialogue system,
web page navigation and operation, search engine, or (iii)
interact with a general control environment if equipped
with low-level perception and control APIs to interact with
the environment, e.g., instruction or API based robot con-
trol. The fundamental ability comes from the knowledge
learned from the large text corpus. Most LDMs based on
LLMs are not trained to optimize the utility obtained by the
agent, although this can be achieved by RL.

In fact, the above two paradigms are built based on the
world models in dynamics and text. In general, if we can train
a foundation model to understand and generate the data of a
particular modality, we are close to building a world model
in such a modality, based on which it is promising to build an
LDM. It is also possible to build new LDMs based on large
vision models in the near future. Due to the page limit, we

will just discuss some applications of LDMs with the above
two paradigms in the domains of robotics and game AI.

Robotics. Robot learning is a rising field during recent
years. In general, learning from experience data makes it pos-
sible to bypass human-crafted rules or control theories based
on environmental assumptions. Nonetheless, reinforcement
learning methods are still difficult to enable the robot agent
to generalize to different environments or tasks. As such, it is
promising to leverage LDMs to overcome the above difficul-
ties. In GC setting, for example, to train a quadrupedal robot
to move over a large range of terrains and handle the sim-
to-real gap, TERT [Lai et al., 2022] leverages a GPT student
policy to learn from the local observations and the actions dis-
tilled from a teacher policy that accesses the true terrain in-
formation as the privileged information. To train a controller
working on a wide range of embodiments of quadrupedal
robots, EAT [Yu et al., 2022] is a GPT policy that takes in
the vector representation of different quadrupedal robot em-
bodiments and is trained for expert action prediction. In LB
setting, the LLM can be used to understand and decompose
the task instruction. With the perception APIs available, the
environment state can be described via natural languages, and
then based on the control APIs, the agent actions can be se-
lected and filled with appropriate parameters via the LLM and
executed in the environment. Remarkable examples include
Code as Policies [Liang et al., 2022], PaLM-E [Driess et al.,
2023], and ChatGPT for Robotics [Vemprala et al., 2023].

Game AI. The AI characters (i.e., NPC) in games play an
important role to improve the user experience and even shape
the game mechanism. For RTS, MOBA or MMO games,
LDMs in GC settings are used to obtain superhuman combat
performance. Different from robotics, game AI focuses on
the interaction between agents and human users. With LDMs
for GC, it is potential that the trained game AI agents are able
to generalize over multiple game levels or tasks [Meng et al.,
2021; Team et al., 2023]. Moreover, in role-playing and so-
cial prototyping games, the NPC agents can be implemented
with LDMs based on LB. In Park et al. [2023], the NPCs
are instantiated with generative agents, which enable them to
move with purpose and chat with each other freely. Thus, if
the game developer wants the town to host an in-game Valen-
tine’s Day party, he does not need to craft the scripts of partic-
ular NPCs but just tell one NPC agent that she wants to host
a Valentine’s Day party. Then the agent would interact with
others to push for the event to happen.

5 Conclusion
In this article, we have discussed large decision models
(LDMs), a new paradigm of techniques for general decision-
making intelligence. LDMs refer to large parameter-size
models that are able to handle multiple decision-making tasks
simultaneously and can adapt to new tasks with a zero-shot
or few-shot sample cost. To acquire these advantages, the
LDMs we have observed are mostly based on Transformers.
Research and applications centered around LDMs are on the
rise. It is plausible to anticipate a surge in sequential decision-
making intelligence in the imminent future.
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