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Abstract
Machine Learning (ML) systems are increasingly
being adopted to make decisions that might have a
significant impact on people’s lives. Because these
decision-making systems rely on data-driven learn-
ing, the risk is that they will systematically prop-
agate the bias embedded in the data. To prevent
harmful consequences, it is essential to compre-
hend how and where bias is introduced and pos-
sibly how to mitigate it. We demonstrate Bias
on Demand, a framework to generate synthetic
datasets with different types of bias, which is avail-
able as an open-source toolkit and as a pip pack-
age. We include a demo of our proposed synthetic
data generator, in which we illustrate experiments
on different scenarios to showcase the interconnec-
tion between biases and their effect on performance
and fairness evaluations. We encourage readers to
explore the full paper for a more detailed analysis.

1 Introduction and Motivation
The increasing digitisation of society has led to a surge in
available data, driving the widespread adoption of ML. How-
ever, algorithms, like humans, are susceptible to biases that
might lead to unfair outcomes [Angwin et al., 2016]. Bias
is not a recent problem: it is ingrained in human society
and, as a result, it is reflected in data [Ntoutsi et al., 2020;
Castelnovo et al., 2022a]. The risk is that the adoption of
ML algorithms could amplify or introduce biases that will
recur in society in a perpetual cycle [Mehrabi et al., 2021;
Castelnovo et al., 2020; Pagan et al., 2023]. Despite vari-
ous attempts by the algorithmic fairness community to out-
line different types of bias in data and algorithms, there is
still a limited understanding of how these biases relate to the
fairness of ML-based decision-making systems [Hutchinson
and Mitchell, 2019]. Both academia and industry have re-
cently launched many initiatives and projects with the am-
bitious goal of fostering the development of bias-aware ML
models. Following [Ntoutsi et al., 2020], we divide these
works into three main categories: understanding bias, which
includes approaches that help to understand how bias is gen-
erated in society and manifests in data [Suresh and Guttag,

2021]; accounting for bias, which includes approaches dis-
cussing how to manage bias depending on the context, reg-
ulation, vision and strategy on fairness [Hu et al., 2019;
Castelnovo et al., 2021; Crupi et al., 2022]; mitigating bias,
which includes technical approaches aimed at reducing bias
throughout the ML development pipeline [Caton and Haas,
2020]. One common approach to investigate algorithmic de-
velopments is through synthetically generated data [Le Quy
et al., 2022; Howe et al., 2017; Gujar et al., 2022].

In this work, we demonstrate a way to investigate bias by
exploiting Bias on Demand [Baumann et al., 2023], our
modeling framework for generating synthetic data with spe-
cific types of bias1. The formalisation of various types of bias
is based on the theoretical classifications in relevant surveys
on bias in ML [Mehrabi et al., 2021; Ntoutsi et al., 2020;
Suresh and Guttag, 2021]. The benefits of this strategy in-
clude the possibility of examining circumstances not avail-
able with real-world data but that may occur, and – even
when real-world data is available – to precisely control and
understand the data generation mechanism. Moreover, it
is indisputable that making data and related challenges ac-
cessible to the research community for analysis could con-
tribute to sound policy decisions that benefit society [Raghu-
nathan, 2021]. We leverage the framework to generate differ-
ent scenarios characterised by the presence of various types
of bias.2 Through an open-source implementation of the pro-
posed model framework, we aim to allow the research com-
munity to exploit our synthetic data generator to create ad hoc
scenarios that are difficult to find in benchmark datasets avail-
able online. This work aims to bring attention to the issue of
bias and promote the development of free of bias AI systems,
aligning them with the sustainable development goals.

2 Bias Landscape in ML
There is little consensus in the literature regarding bias clas-
sification and taxonomy. Indeed, the very notion of bias de-
pends on deep philosophical and ethical considerations. Dif-
ferent understandings of bias and fairness depend on the as-

1Please refer to the full paper [Baumann et al., 2023] for further
details on the synthetic data generator, as well as a set of examples.

2Demo available at tinyurl.com/biasondemand. For more exper-
iments and the code, see github.com/rcrupiISP/BiasOnDemand.
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sumption of a belief system beforehand. [Friedler et al.,
2021] and [Hertweck et al., 2021] talk about worldviews. In
particular, [Friedler et al., 2021] outline two extreme cases,
referred to as What You See Is What You Get (WYSIWYG)
and We are All Equal (WAE). Starting from the definition of
three different metric spaces, these two perspectives differ be-
cause of the way they consider the relations in between. The
first space is the Construct Space (CS) and represents all the
unobservable realised characteristics of an individual, such
as intelligence or skills. The second space is the Observ-
able Space (OS) and contains all the measurable properties
that aim to quantify the unobservable features, think e.g. of
IQ or aptitude tests. The last space is the Decision Space
(DS), representing the set of choices made by the algorithm
on the basis of the measurements available in OS. If WYSI-
WYG is assumed, non-discrimination is guaranteed as soon
as the mapping between OS and DS is fair, since WYSIWIG
assumes CS ≈ OS. In contrast, according to WAE, the map-
ping between CS and OS is distorted by some bias whenever
an observable difference among groups emerges (this differ-
ence is called measurement bias in [Hertweck et al., 2021]);
therefore, to obtain a fair mapping between CS and DS those
biases should be mitigated properly. In their paper, [Her-
tweck et al., 2021] build upon the work of [Friedler et al.,
2021] and present a more detailed scenario by introducing the
concept of Potential Space (PS): individuals belonging to dif-
ferent groups may indeed have different realised talents (i.e.
they actually differ in CS), and these may be accurately mea-
sured by resumes (i.e. CS ≈ OS), but, if we assume that these
groups have the same potential talents (i.e. they are equal in
PS), then the realised difference must be due to some form of
unfair treatment of one group, that is referred to as life bias.

With a different perspective, [Suresh and Guttag, 2021] ar-
gue that bias can also be seen as a source of harm that arises
during different stages of the ML life cycle. Indeed, the en-
tire ML life cycle, from data collection to model deployment,
involves a series of decisions and actions that can lead to un-
intended consequences. It is important to distinguish between
biases that arise during the data collection (affecting the data
generation) and biases that arise during the development and
deployment of the model (affecting the system’s outcome).
Indeed, in real cases, the former typically depend on context
and are inherent in the data without the user being able to
eliminate them during data collection, while the latter depend
on users’ decisions in handling the data. Proper mitigation
relies on the comprehension of the biases that affect the data
generation and should be determined through both technical
and philosophical considerations.

2.1 Fundamental Types of Bias
We now introduce what we consider the core building blocks
of most types of bias involved in data generation, namely:
historical bias, measurement bias, and representation bias.

Biases going from User to Data (UtD) impact the phe-
nomenon to be studied and thus the dataset, instead biases
going from Data to Algorithm (DtA) impact the dataset but
not the phenomenon itself [Mehrabi et al., 2021].
Historical bias (UtD). Occurs whenever a variable of the
dataset relevant to some specific goal or task is dependent on

some sensitive characteristic of individuals, but in principle
it should not. An example is the different average income
among men and women due to long-lasting social barriers and
not reflecting intrinsic differences among genders. A similar
situation may arise when dependence on sensitive individual
characteristics is present with respect to the variable that we
are trying to predict. These are the cases in which the target
of model estimation is itself prone to some form of bias, e.g.
because it is the outcome of some human decision.

Measurement bias (DtA). Occurs when a proxy of some
variable relevant to a specific goal or target is employed, and
that proxy is dependent on some sensitive characteristics. For
instance, one may argue that IQ is not a “fair” approximation
of actual “intelligence”, and it might systematically favour/d-
isfavour specific groups of individuals. Incidentally, this form
of bias might as well occur with the target variable (i.e. the
label). In this situation, it is the quantity that we are trying to
estimate/predict that is somehow “flawed” in the data.

Representation bias (DtA). Occurs when data are not rep-
resentative of the population. For example, one subgroup of
individuals, identified by a sensitive characteristic such as
ethnicity, age, etc., may be heavily underrepresented. This
may occur in different ways. It may be at random, i.e. the
subgroup is less numerous than it should be, but without any
particular skewness in the other characteristics: in this sce-
nario, this single mechanism is not sufficient to create dispar-
ities, but it may exacerbate existing ones. Alternatively, the
under-represented subgroup might contain individuals with
disproportionate characteristics with respect to their corre-
sponding world population, e.g. only low-income individu-
als. In the latter case, representation bias may be sufficient
to create inequalities in decision-making processes based on
that data.

The above list of biases should be seen as the set of the
most important mechanisms through which unfairness can
leak into ML-based decision-making systems due to the used
dataset. In terms of consequences on the data, it may well be
that different types of bias result in very similar effects. For
example, representation bias may create in the dataset spuri-
ous correlations among sensitive characteristics of individu-
als and other characteristics relevant to the problem at hand,
a situation very similar to the correlations present as a conse-
quence of historical bias. This reminds us that, in general, we
are not aware of the type of bias (or biases) affecting the data
and that their interpretation depends on former assumptions.

3 Dataset Generation
We propose a simple modelling framework to simulate the
bias described in Section 2.1. The rationale behind the model
is that of being at the same time sufficiently flexible to ac-
commodate all the main forms of bias while maintaining a
structure as simple and intuitive as possible to facilitate hu-
man readability and ensure compactness avoiding unneces-
sary complexities that might hide the relevant patterns.

As noted in Section 2.1, following [Mehrabi et al., 2021],
we can distinguish between from user to data and from data to
algorithm biases. Formally, we model the relevant quantities
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describing a phenomenon as random variables, in particular,
we label Y the target variable, namely the quantity to be es-
timated or predicted on the basis of other feature variables,
that we collectively call X . As usual, we assume that the
underlying phenomenon is described by the formula:

Y = f(X) + ϵ, (1)

where f represents the actual relationship between features
and target variables, modulated by some idiosyncratic noise ϵ.
Oftentimes, what we observe in the OS is not equivalent to the
construct we would like to grasp (in the CS). Formally, this
refers to how features and labels are generated and collected:

X̃ = g(X), Ỹ = h(Y ); (2)

where g and h represent the collection and measurement
of relevant individual attributes and outcomes. The use of
(X̃, Ỹ ) rather than (X,Y ) describes the fact that the set of
variables employed to make inferences about a phenomenon
may not coincide with the actual variables that play a role in
that phenomenon. This is precisely what happens in some
forms of bias. Notice that UtD types of bias impact directly
Equation (1), while DtA biases affect the data observation
process described in Equation (2).

Our framework is in line with that proposed by [Suresh and
Guttag, 2021]. In the following, we propose a simple and ex-
plicit mathematical formalisation of the framework, using the
following notation: R are variables representing resources of
individuals which are relevant for the problem, i.e. they di-
rectly impact the target Y ; A denote variables indicating sen-
sitive attributes, such as ethnicity, gender, etc.; PR stand for
proxy variables that we have access to instead of the original
variable R; Q denote additional variables, that may or may
not be relevant for the problem (i.e. impacting Y ), and that
may or may not be impacted either by R or A, e.g. the neigh-
bourhood one lives in.

Historical bias occurs when the relevant variable R is
somehow impacted by sensitive feature A. Measurement bias
occurs when the relevant variable R is, in general, free of bias,
but we cannot access it. Therefore, we employ a proxy PR,
which is impacted by A. Measurement bias could also occur
on the target variable Y when we can only access a (biased)
proxy PY of the phenomenon we want to predict.

The following system of Equations formalises the relation-
ships between variables used to simulate specific forms of bi-
ases. Notice that the independent random variables N· and B·
are continuous-valued and integer-valued, respectively. They
represent the sources of variability in the generated dataset,
while the structure of the equations imposes the (desired) de-
pendence among the relevant variables. The continuous vari-
able R could represent, e.g., salary, and the discrete variable
Q (which can take K + 1 different values) could represent
a zone in a city. Indeed, Q is distributed as a binomial vari-
able in {0, . . . ,K}, with Bernoulli marginal probability pQ
dependent on R and A via a simple logistic function. The bi-
nary sensitive variable (A) is distributed as a Bernoulli {0, 1}
variable, with pA proportion. Variable S is an auxiliary vari-
able used to generate a binary target Y by thresholding S. The
magnitude of the historical bias (on the features or labels) is

denoted by the variable βi
h for i ∈ {R,Q, Y }.

A =BA, BA ∼ Ber(pA); (3a)

R =− βR
h A+NR, NR ∼ Gamma(kR, θR); (3b)

Q =BQ, BQ | (R,A) ∼ Bin(K, pQ(R,A)), (3c)

pQ(R,A) = sigmoid
(
−(αRQR− βQ

h A)
)
;

S =αRR− αQQ− βY
h A+NS , NS ∼ N (0, σ2

S); (3d)
Y =1{S>PS}. (3e)

When simulating measurement bias (denoted by βj
m > 0

for j ∈ {R, Y }), either on resources R or on target Y ,3 we
are going to use the following proxies as noisy (and biased)
substitutes for the actual variables:

PR = R− βR
mA+NPR

; NPR
∼ N (0, σ2

PR
); (4a)

PS = S − βY
mA+NPS

; NPS
∼ N (0, σ2

PS
); (4b)

PY = 1{PS>PS}. (4c)

We denote with β’s the parameters governing the presence
and strength of each form of bias, while we use α’s for pa-
rameters that regulate the relationships among variables not
directly involving bias introduction. Additionally, in order to
account for representation bias, we undersample the group
A = 1 conditioned on R by selecting the A = 1 individuals
with lower values for R (governed by the parameter pu).

4 Demo and Call for Further Work
The Bias on Demand demonstration is available at
tinyurl.com/biasondemand and consists of a set of different
synthetic datasets that are coupled with bias mitigation tech-
niques (such as the ones proposed by [Hardt et al., 2016;
Corbett-Davies et al., 2017; Baumann et al., 2022]). This
allows us to investigate the effects of different types of bias
on the outcomes of ML-based decision making systems (mea-
sured through standard performance and fairness metrics pro-
posed by the algorithmic fairness community [Castelnovo et
al., 2022b; Verma and Rubin, 2018]).

This work aims to raise awareness of bias in AI-based sys-
tems and its potential impacts on individuals and society, pro-
moting the development of systems that are consistent with
the universal ethical principle of non-discrimination.

A large set of experiments, as well as the code to create new
ones, is publicly available at BiasOnDemand. The pack-
age can be installed via pip and used to generate synthetic
datasets with various types of bias in just a few lines of code.

We lay the groundwork for developing novel tools and
strategies, such as systems for detecting and identifying dif-
ferent types of bias, as well as implementing specific bias
mitigation techniques. We hope that our toolkit will encour-
age the research community to undertake further studies us-
ing synthetic datasets where real-world datasets are lacking.

3Notice that the labels Y are a binary realisation of S (of its
proxy PS for PY , respectively). We use the distribution mean of
PS , denoted by PS , to derive binary values for Y and its proxy PY .
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