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Abstract

SiWare is an Al-powered knowledge discovery sys-
tem, that helps unlock new insights and accelerates
data-driven decisions with contextualized industrial
data. SiWare links and fuses heterogeneous data
sources with an industry semantic model leverag-
ing multiple Al capabilities to provide system-wide
visibility into operational characteristics. As part of
this demo paper, we describe the requirements for
such a system, along with its deployment aspects,
and demonstrate the benefits in two industrial sce-
narios.

1 Introduction

Most industrial data, as much as 95%, is not connected and
used [Bane, December 2020]. A 2022 study by the Manu-
facturing Institute indicates that 78% of companies are con-
cerned about impending aging workforce and lack of knowl-
edge transfer is estimated to cost large businesses $47 million
per year due to time waste, missed opportunities, and delayed
projects [Institute, July 2019]. This presents an opportunity
for systematic approaches to organize, link, and contextual-
ize the diverse and siloed industrial datasets into a knowl-
edge representation that can support improved downstream
analytics. Given a dataset of a particular modality, for ex-
ample, textual log files, or manuals, there are techniques to
create industry specific word embeddings and use such fine-
tuned models for tasks such as classification [Khabiri et al.,
2019]. Similarly, given tabular datasets, there are Al ap-
proaches described to classify and link values [Sankhe et al.,
2021] based on the context embedding that surrounds a cell
in a tabular setting. For timeseries datasets, there are multiple
approaches to generate valuable insights such as data qual-
ity anomalies [Zerveas et al., 2021; Shrivastava et al., 2020;
Patel er al., 2022]. The primary focus so far has been either
on analyzing datasets for one modality (text, tabular, time se-
ries, etc.) and generating insights, or on task-specific learn-
ing from multiple modalities [Erickson et al., 2022]. Using
this demonstration paper, we aim to address the gap of a sys-
tematic approach to leverage multiple such Al capabilities
which may be data-modality-dependent and yet bring them
together to create a unified representation of the multi-modal
data sources thus enabling situational awareness.
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1.1 Scenario 1: Semiconductor Manufacturing

Microelectronic manufacturing and development is a com-
plex process involving data distributed across multiple
data sources, structured and unstructured, including master
databases, operational applications (manufacturing execution
systems, scheduling applications), process trace data reposi-
tory, maintenance reports, tool manuals, ad-hoc documenta-
tion of historically interesting events. Current practices rely
on expert knowledge to extract, harmonize, aggregate and an-
alyze data, and is done independently and repeatedly for each
use case. In many cases, the subject matter expert (SME) has
to work with data scientist to capture their domain expertise
into the end-to-end analysis cycle. There is a need to organize
data into semantically meaningful entities and relationships
and enable retrieval of semantically related data without de-
tailed knowledge of schemas or query languages. It is also
imperative that an SME is able to interact with such a system
to not only consume it but also to organize data leveraging
their domain knowledge. Such semantic representation can
enable high-value use cases like root cause diagnosis. For ex-
ample, search for “metal liner deposition” returns data, docu-
ments referring to (1) “metal liner deposition” (2) liner depo-
sition tool (3) graphs with electrical measurements influenced
by liner deposition (4) others

It is important to note that semantic representation of the
data is not reliant on the existence of an ontology or an indus-
try standard but instead derived “bottoms-up” from the opera-
tional data that reflects the dynamic state of the environment.

1.2 Scenario 2: Continuous Flow Manufacturing

An operations center monitoring a plant floor can receive
1000s of alarms every day. Responding to each alarm is a crit-
ical but challenging task as it involves manual iterative steps
of identifying relevant data including historical reports, adja-
cent related equipment in P&IDs, IoT sensor readings, ana-
lyzing trends and patterns, and performing root cause analy-
sis by understanding the state of the related systems. There
is a high cost of misreading an alert or inaction. There
is a need to contextualize these diverse data sources in an
(semi)automated fashion into a unified knowledge represen-
tation (such as a knowledge graph) that provides proactive
recommendations and 24/7 guidance to operators.
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Figure 1: Basic components of SiWare including domain-independent but data-modality-dependent contextualization flows and a fusion

service.

2 SiWare Overview
There are 4 key components of a SiWare flow (Figure 1):

e Connect: User can connect to the heterogeneous data
sources in their environment by staging the data in Ob-
ject Storage like IBM COS' or local file system and us-
ing the \connect APL

o Contextualize: User can initiate one or more
contextualization flows by first invoking the
\contextualizel\initialize API to orga-
nize the data into a Collection which acts as a logical
grouping of data that is needed for knowledge discovery.
Each contextualization flow is aimed at extracting the
knowledge - entities and relationships - from the col-
lection and creates a graph representation. Examples of
such flows include named entity recognition (NER) in a
text data collection (\contextualize\ner API), or
identifying relevant sensor correlations from a collection
of sensor data (\contextualize\sensor API)
informed by P&ID diagrams. The contextualization
flows trigger Al models which run asynchronously re-
turning a job id, the status of which can be queried using
the \status APIL The completed flow may result in
purging of the staged data based on the configuration.
Each contextualization flow has a standard interface
with inputs being a collection and a configuration
file and outputs a .json artifact of entity-relationship
mapping.

e Fuse: The user can fuse the output of one or more con-
textualization flows into an industrial knowledge graph
using the \ fuse APIL The fusion service is responsible
for reconciling the entities and relationships using either
given business logic or inferred matching criteria [Al-
Moslmi et al., 2020]

"https://www.ibm.com/cloud/object-storage

e Access: The user can query the unified knowledge graph
using the \access API. Predefined templates for in-
dustrial use cases allow the user to retrieve sub-graphs
for root cause analysis given a problem, or creating data
pipelines for developing a failure prediction model.

This plug-and-play architecture enables additional data
modality-dependent Al-powered contextualization services
to be added. For example, wafer monitoring in semiconductor
manufacturing using scanning electron microscope images is
a data source that could be added to connect, with wafer de-
fect classification as a contextualization flow. Such classi-
fied defects can be fused in the knowledge graph. An engi-
neer in the fab can now access historical defects which could
have resulted from a similar anomaly in the measurements
observed currently.

The ability to select and add new contextualization flows
within the framework enables applicability in a wide variety
of industrial use cases. Section 3 lists the deployment aspects
and Section 4 describes the benefits in real-world usage.

3 Deployment

SiWare is packaged as containers that can be deployed on Hy-
brid Cloud via the Red Hat OpenShift? platform. The knowl-
edge graph uses Janusgraph® as the graph database and is
compatible with Apache Tinkerpop standards*. SiWare has
been deployed in both private cloud and IBM public cloud.

3.1 User Personas

There are 2 personas interacting with SiWare, the domain ex-
pert who creates and updates the knowledge graph, and the
operator who consumes the knowledge for efficient execu-
tion of operations.

Zhttps://www.redhat.com/en/technologies/cloud-computing/
openshift/container-platform

3https://janusgraph.org/

*https://tinkerpop.apache.org/
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Figure 3: Sensor contextualization interface.

e The domain expert may or may not have data science
knowledge and can interact with the system using a web
user interface or a command line interface or via the
APIs. Figure 2 presents the interaction screen for the
NER contextualization flow where a domain expert can
interactively train a deep learning model based on novel
entity pattern extraction [Khabiri et al., 2022]. Figure
3 presents the interaction for a sensor correlation con-
textualization flow. The domain expert can optionally
integrate a domain semantic model of known entities
and relationships, in a property graph format, using the
Knowledge Capture Service. This can bootstrap the dis-
covery process. An example of such a domain semantic
model is illustrated in figure 4. The semantic model rep-
resents the connection between the common entities like
tool, chamber, route, lot, wafer etc. The contextualiza-
tion flows enable the linking of the operational data to
the semantic model.

The operator persona can consume the graph either
through the web interface or via custom dashboards that
are integrated with their workflow.

Logical
Recipe

Equipment
Recipe

Physical
Recipe

Figure 4: Semiconductor manufacturing domain semantic model
containing tangible and intangible entities and relationships.

4 Evaluation

SiWare has been deployed in real-world scenarios to provide
valuable operational insights using multi-modal data.

In semiconductor manufacturing, SiWare is being used
to identify all relevant on-wafer measurements for a failure
report that could suggest a root cause. Every time a fail-
ure report is searched for, the access mechanism in SiWare
traverses the knowledge graph to return a measurement set
of the order of 10s of values from ~ 500K total number of
measurements. This has dramatically reduced the mean time
to diagnose a problem. In addition, our study indicates SME
time savings of 50% in creating a semantic model and using
it for semantic search and related problem diagnosis.

In continuous flow manufacturing, SiWare is being used
to provide all contextual information in a single pane of glass
for an operator to respond to an alarm. Given information
about the distributed control systems, sensors, alarms, op-
eration logs, and P&IDs, SiWare continuously organizes the
knowledge into a representation that can be used to dynami-
cally fetch the context needed for alarm response. Our exper-
iments indicate a reduction of 80% of time spent on situation
understanding and response.
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