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Abstract
Markov Logic Networks (MLN) are used for rea-
soning on uncertain and inconsistent temporal data.
We proposed the TMLN (Temporal Markov Logic
Network) which extends them with sorts/types,
weights on rules and facts, and various temporal
consistencies. The NeoMaPy framework integrates
it in a knowledge graph based on conflict graphs,
which offers flexibility for reasoning with parame-
tric Maximum A Posteriori (MAP) inferences, effi-
ciency thanks to an optimistic heuristic and interac-
tive graph visualization for results explanation.

1 Introduction
Markov Logic Networks (MLNs) [Richardson and Domingos,
2006; Domingos and Lowd, 2019] are a very useful concep-
tual tool for reasoning over uncertain facts. They combine
Markov networks and First Order Logic, by attaching weights
to logic formulae. Several MLNs extensions have been de-
vised to work on different types of data [Snidaro et al., 2015;
Chekol et al., 2016; Rincé et al., 2018]. Those uncertain tem-
poral facts generate conflicts. Reasoning on those facts often
requires to resolve those conflicts, i.e., to find consistent sets
of facts useful for multi-agent tasks, production of hypotheses
in history, global analysis, etc.

MLNs help find the most probable state of the world,
gathering a set of facts whose weights have maximal probabi-
lities with a process called Maximum A-Posteriori inference
(MAP) [Niu et al., 2011; Riedel, 2012; Noessner et al., 2013;
Sarkhel et al., 2014]. However, the state of the art inte-
grating temporal information into MLN is insufficient, and
computing the MAP inference usually relies on a heavy data
mining process which checks rules application on possible
facts [Chekol et al., 2017b]. It may be optimized by aggre-
gating some formulae and by parallelizing the mining, but the
complexity of those pessimistic approaches remains highly
dependent on the number of possibilities.

We have recently introduced an extension of MLNs called
Temporal Markov Logic Networks (TMLN) [David et al.,
2022], along with a temporal semantics which may be con-
figured through 3 categories of functions. We have de-
vised key principles on the semantics for MAP inference,
to reach desirable properties, and examined total and partial

(in)consistency relations between temporal formulae. Our
completely different approach to MAP inference relies on
building compatible worlds instead of mining valid worlds.

In this paper, we now introduce the NeoMaPy framework,
a complete implementation of our approach for TMLN rea-
soning1. To achieve this, we extract a conflict graph bet-
ween facts [Bertossi, 2011; Hipel et al., 2020], based on the
rules and the nodes weights. Thus, the MAP inference now
searches combinations of non-conflict graphs. This optimistic
approach allows to parameterize MAP inferences with vari-
ous semantics, computing efficiently with a heuristic and in-
teracting with results for explaining choices of facts.

2 Background Concepts
2.1 Temporal Markov Logic Networks
Temporal Markov Logic Networks are based on a Temporal
Many-Sorted First-Order Logic TF-FOL which combines for-
mulae and temporal predicates from a temporal domain, to
represent temporal facts and rules (more details are presented
in [David et al., 2022]). Temporal Markov Logic Networks
associate a degree of certainty to each formula.

A TMLN M = (F,R) is a set of weighted temporal facts
and rules where F and R are sets of pairs such that:
– F = {(ϕ1, w1),. . . , (ϕn, wn)} with ∀i ∈ {1,. . . , n}, ϕi ∈
TF-FOL such that it is a ground formula (i.e., without variable,
see Table 1) and wi ∈ [0,∞[,
– R = {(ϕ′1, w′

1),. . . , (ϕ′k, w
′
k)} with ∀i ∈ {1,. . . , k}, ϕ′i ∈

TF-FOL such that it is not a ground formula and in the form
(premises, conclusion), i.e., (ψ1∧. . .∧ψl) → ψl+1 where
∀j ∈ {1,. . . , l + 1}, ψj ∈ TF-FOL, and wi ∈ [0,∞[.
The universe of all TMLNs is denoted by TMLN.

2.2 MAP Inference
After obtaining the representation of facts and rules in a
TMLN, to select the most probable and consistent set of
ground formulae with a MAP inference, we proceed to an
instantiation of the TMLN, to obtain the ground rules (when
possible) by replacing variables in rules by constants.

A TMLN instantiation I ⊆ MI(M) is a TMLN only com-
posed of ground formulae, I is also called a state of the
TMLN M, and MI(M) is its maximal instantiation, i.e.,

1A companion video for this paper is available at https://www.
youtube.com/watch?v=c8AzFQMs1I4
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Figure 1: Temporal in/consistency information. P and ¬P are con-
flicting predicates, with time T1 (distinct time in blue) and T2 (dis-
tinct time in red) respectively (common time is in grey). Hatched
zones are not necessary time zones.

the set of all ground formulae from M. An instantiation
can be inconsistent. The universe of all TMLN instantia-
tions is denoted by TMLN∗. To compute the strength of a
TMLN state, we resort to a semantics. We denote the uni-
verse of all semantics by Sem, such that for any S ∈ Sem,
S : TMLN∗ → [0,+∞[. It computes a strength above 0 (not
a probability between 0 and 1). One semantics may maxi-
mize the amount of information and quality for another one.
States computed by MAP inference are relative to a given
semantics. Given a TMLN M ∈ TMLN and a semantics
S ∈ Sem, a method solving a MAP problem is denoted
by: map : TMLN × Sem → P(TMLN∗), where P(X) de-
notes the powerset of X, such that: map(M,S) = {I | I ∈
argmax

I ⊆ MI(M)

S(I) and ∄I ′ ∈ argmax
I′ ⊆ MI(M)

S(I ′) s.t. I ⊂ I ′}.

Our approach introduces a semantics decomposed in three
functions: a validation of instantiations function ∆ integrat-
ing various consistency relations, ii) a selecting function σ
that modifies formulae’s weights in instantiations and iii) an
aggregate function Θ returning the final strength. A tempo-
ral parametric semantics is a tuple TPS = ⟨∆,σ,Θ⟩ ∈ Sem,
st.: ∆ : TMLN∗ → {0, 1}, σ : TMLN∗ →

⋃+∞
k=0[0, 1]

k,Θ :⋃+∞
k=0[0, 1]

k → [0,+∞[. And for M ∈ TMLN, I ⊆ MI(M),
the strength of a temporal parametric semantics TPS =

⟨∆,σ,Θ⟩ is computed by: TPS(I) = ∆(I) ·Θ
(
σ(I)

)
.

An example of a selection function is a threshold function,
an aggregation function may be different types of sums, and
for validation functions we have defined the notions of par-
tial and total temporal in/consistencies, which depend on the
temporal intersection of conflicting information (Figure 1).

2.3 Reasoning Example

In Table 1, we present some facts about the Brazilian football
player Pelé, formalized with a TMLN. It is certain that he was
a football player between 1956 and 1977 (F1). Other facts
state some information about teams he may have played with,
or not. Then, we introduce a rule indicating that, in general,
a player can only play for one team at a time (R1). Variables
are typed into two sorts, α and β, respectively indicating a
general concept or a temporal point. Table 2 shows examples
of rule R1 instantiated with some facts from Table 1. For
instance, GR11 is instantiated from facts F1, F2 and F4.

F1 (Footballer(Pele, 1956, 1977) , +∞)
F2 (PlayFor(Pele,NY C, 1975, 1977) , 0.6)
F3 (PlayFor(Pele, Santos, 1956, 1974) , 0.8)
F4 (PlayFor(Pele, Santos, 1973, 1976) , 0.4)
F5 (¬PlayFor(Pele, Santos, 1972, 1990) , 0.7)
F6 (PlayFor(Pele, Brazil, 1958, 1970) , 0.9)
R1 (∀xα, yα, zα, tβ1 , t

′β
1 , tβ2 , t

′β
2 , tβ3 , t

′β
3 (Diff(yα, zα)

∧Footballer(xα, tβ1 , t
′β
1 ) ∧ PlayFor(xα, yα, tβ2 , t

′β
2 )∧

¬Disjoint(tβ2 , t
′β
2 , tβ3 , t

′β
3 )) → ¬PlayFor(xα, zα, tβ3 , t

′β
3 ) , 0.7)

Table 1: Example of a TMLN for the football player Pele.

GR11 ((Diff(NY C, Santos) ∧ ¬Disjoint(1975, 1977, 1973, 1976)∧
PlayFor(Pele,NY C, 1975, 1977) ∧ Footballer(Pele, 1956, 1977))

→ ¬PlayFor(Pele, Santos, 1973, 1976), 0.6)
GR12 ((Diff(Santos,NY C) ∧ ¬Disjoint(1973, 1976, 1975, 1977)∧
PlayFor(Pele, Santos, 1973, 1976) ∧ Footballer(Pele, 1956, 1977))

→ ¬PlayFor(Pele,NY C, 1975, 1977), 0.7)
GR13 ((Diff(Brazil, Santos) ∧ ¬Disjoint(1958, 1970, 1956, 1974)∧
PlayFor(Pele, Brazil, 1958, 1970) ∧ Footballer(Pele, 1956, 1977))

→ ¬PlayFor(Pele, Santos, 1956, 1974), 0.7)

Table 2: Some ground rules instantiating R1 (from Table 1).

3 The NeoMaPy Approach
The NeoMaPy framework consists of a two-step MAP in-
ference extraction based on a graph database, and a conflict
resolution heuristic. This major contribution introduces a pa-
rametric, efficient and interactive process.

Graph of conflicts. This first step transforms a TMLN in-
stantiation into a property graph where constants and predi-
cates become Concept nodes. Ground formulae combining
those concept nodes are represented as TF nodes (Temporal
Formula) with temporal predicates and weights as properties.
Rules are expressed as queries on the graph of interactions
between TF nodes based on their properties, constants and
predicates. They produce conflict relationships between TF
nodes, labelled with a conflict type. TF and Concept nodes
and relationships are stored in a graph database.

Thanks to this conflict graph, applying semantics corres-
ponds to a pattern query on the graph, searching for conflicts
between TF nodes. It reduces the MAP inference to the com-
putation of the maximal subset of consistent TF nodes.

Infering the MAP. Once the set of conflictual nodes has
been obtained, the MAP inference is computed in two steps:
1) we conduct a pre-processing that structures our data into a
set of connected components (i.e., if there is no path between
two nodes, they are not connected). 2) for each connected
component (i.e., a dictionary) we apply in parallel the MAP
inference algorithm MaPy which creates a list of solutions by
iteratively trying to add each node to the current solutions.
We optimize this process by using a heuristic to eliminate the
worst solutions and by restricting the size of this solution list,
i.e., by keeping the k best solutions.

4 Implementation
Figure 2 illustrates the architecture of the NeoMaPy frame-
work. The first step extracts the knowledge graph by instanti-
ating facts and ground facts with the Neo4j2 graph database
(nodes’ size depends on weights). By applying rules, the

2https://neo4j.com
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Figure 2: NeoMaPy pipeline for the MAP inference.

graph of conflicts is extracted from facts (green and purple
links). The second step exploits the list of conflicts with a pa-
rameterized semantics and processes it with the MaPy algo-
rithm implemented in Python (red circles are removed nodes).
The source code and datasets are available on GitHub3.

4.1 MAP Inference Computation
Conflicts extraction from TF nodes has been implemented
in Neo4j. Facts are imported from CSV files. The graph
is composed of Concept and TF nodes. Rules are applied
to instantiate ground rules as Cypher queries. Conflicts are
then instantiated as “conflict” relationships on the graph, by
searching for TF with corresponding patterns (rules).

The Cypher query below illustrates the generation of con-
flicts for the pCon rule (partial temporal consistency). If two
TF tf1 and tf2 share the same concepts (s,o,p) with opposite
polarities (positive or negative information) and a timeframe
intersection, it produces a pCon conflict between tf1 and tf2.
For optimization purposes, concept IDs are repeated in TF
nodes (e.g., tf1.p = tf2.p). Conflict and inference relation-
ships are typed.
MATCH (tf1:TF) -[:s]-> (:Concept) <-[:s]- (tf2:TF)
WHERE tf1.p=tf2.p and tf1.o=tf2.o and tf1.polarity <>
tf2.polarity AND ( (tf1.date_start <= tf2.date_start
and tf2.date_start <= tf1.date_end) AND (tf1.date_start
<= tf2.date_end and tf2.date_end <= tf1.date_end) )

MERGE (tf1)-[c:conflict]-(tf2) SET c.pCon=true;

The resulting graph eases the tracability of the MAP in-
ference. Moreover, MaPy processes the inference with a pa-
rametric semantics extracted with a Cypher query of corre-
sponding conflicts, and inference rules (inferred TF are ig-
nored along with their premises), thresholds on weights, etc.

4.2 Scenarios
A Graphical User Interface was developed using Graph-
Stream 4 [Dutot et al., 2007], to improve the reasoning pro-
cess on uncertain temporal knowledge graphs. The dataset
we use contain football facts and rules from [Chekol et al.,
2017a]. The demonstration will show all NeoMaPy steps:

Graph import and conflict extraction. Concept and TF
nodes are imported from CSV files into the Neo4j database
and inference rules are applied. Then, a set of rules expressed
as Cypher queries are applied on the graph.

3https://github.com/cedric-cnam/NeoMaPy Daphne
4A Java library for graphs: https://graphstream-project.org/.

Figure 3: DataViz & statistics of the Knowledge graph with con-
flicts. Left: initial graph with the conflicts colored according to their
type. Right: statistics, in the upper part (below “Quality”); and the
list of inference and conflict types (below “Edges”).

Figure 4: MAP inference DataViz with the tInc (Total Temporal In-
consistency) semantics. We obtain this graph without: conflicts from
business rules (from C6 to C19), temporal conflicts based on tInc,
and conflicting nodes dropped by the MAP inference.

Conflict-graph visualization. The produced conflict graph
is visualized as shown in Figure 3. Several interactions are
offered to users to explore the knowledge graph, such as node
search, clusters of conflict nodes, zooming features. More-
over, graph statistics are computed (graph weights and con-
flict statistics in Figure 3).
Parametric MAP inferences. Eventually, several MAP in-
ference computations are applied to show the impact on the
graph. Simple strategies are compared with different Para-
metric Temporal Semantics showing the maximization of the
argmax S(I) defined in Section 2.2 (e.g., the tInc total incon-
sistency semantics in Figure 4).

5 Conclusion
Our framework NeoMaPy demonstrates the computation of
a MAP inference on TMLNs with formalized uncertain tem-
poral facts and rules. The two-step extraction of the graph of
conflicts and their resolution with a MAP inference heuristic
provides a parametric, interactive and efficient process.
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