
Latent Inspector: An Interactive Tool for Probing Neural Network Behaviors
Through Arbitrary Latent Activation

Daniel Geißler , Bo Zhou and Paul Lukowicz
German Research Center for Artificial Intelligence (DFKI)

RPTU Kaiserslautern-Landau
{Daniel.Geissler, Bo.Zhou, Paul.Lukowicz}@dfki.de

Abstract

This work presents an active software instrument
allowing deep learning architects to interactively
inspect neural network models’ output behavior
from user-manipulated values in any latent layer.
Latent Inspector offers multiple dimension reduc-
tion techniques to visualize the model’s high di-
mensional latent layer output in human-perceptible,
two-dimensional plots. The system is implemented
with Node.js front end for interactive user input and
Python back end for interacting with the model. By
utilizing a general and modular architecture, our
proposed solution dynamically adapts to a versatile
range of models and data structures. Compared to
already existing tools, our asynchronous approach
of separating the training process from the inspec-
tion offers additional possibilities, such as interac-
tive data generation, by actively working with the
model instead of visualizing training logs. Over-
all, Latent Inspector demonstrates the possibilities
as well as the appearing limits for providing a gen-
eralized, tool-based concept for enhancing model
insight in terms of explainable and transparent AI.

1 Introduction
The steadily increasing amount of available data and the ac-
companying rise in model complexity makes it ever more
challenging to understand and interpret the behaviors of ma-
chine learning models. Apart from the necessary design and
training of machine learning models, verification and valida-
tion should not be neglected in the development workflow to
ensure the trained models behave as the architects have in-
tended. The intrinsic model property to behave like a black
box, where input data is supplied and a specific output is
given as result, requires proper methods to open the model
in a way that a user can thoroughly probe the inner details.
[Mohseni et al., 2021; Samek et al., 2017]

While there are other tools revealing the explainability and
transparency such as CAM [Jung and Oh, 2021] or Tensor-
board [Abadi et al., 2015], there lacks a tool to trigger post-
training models with arbitrary input or latent activation val-
ues, especially those outside the scope of the training data. In

Figure 1: Common pipeline for training and inference of machine
learning models compared to the approach of Latent Inspector

real-world applications, behaviors of those triggers can be im-
portant as real-world data can be unexpected, with faulty data
sources, or with external factors that might interfere with the
data integrity of the computing devices [Ziegler, 1996].

We introduce Latent Inspector, an interactive tool to cir-
cumvent the black box approach by disassembling the model
into its fundamental parts without impairing functionality.
Figure 1 shows the general pipeline for developing and ana-
lyzing Neural Networks in comparison to our adapted Latent
Inspector pipeline. Instead of retrieving the necessary infor-
mation in form of logging during the training process, our ap-
proach starts post-training as an inference intermediary. The
tool dynamically adapts and actively works with the trained
model by extracting, modifying, and processing the model’s
layer-based architecture and the available data. We provide
several concepts to visualize the high-dimensional data pro-
cessing in human-perceptible, two-dimensional plots. Fur-
thermore, the user has the option to directly interact with the
model through the tool, which enables extended functionali-
ties like out-of-bounds inspection, fine-tuning layer weights,
and data generation.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Demonstrations Track

7127



Figure 2: Latent Inspector’s basic user interface with annotations to
emphasize interaction with model and dataset

2 Functionality and Use Case
To offer potential users the possibility to probe their trained
model in the Latent Inspector, we designed the tool as an ac-
tive framework with a focus on generality and versatility. To-
gether with a straightforward user interface and a plain file
structure, most of the steps that are typically necessary to ex-
amine a custom model in this scope were transferred from
the user to automatic and dynamic adapting functions inside
the tool. In the following, implemented functionalities and
potential use cases are introduced together with figure 2.

2.1 Functionality
The user interface follows a common and intuitive design lay-
out containing fundamental controls in the sidebar and a grid
system in the main window for interactive visualizations. Af-
ter a short and simple setup process in which the user adds
the necessary files to the designated folder in form of a new
project, the Latent Inspector can directly be launched due to
its ability of dynamically adapting to the provided files.

Dissecting the neural network model and accessing the ar-
chitecture is a key element of our tool to realize the idea of
inspecting every latent layer individually. The tool creates a
list of the present layers from which the user may arbitrar-
ily select one for inspection. An iterative process for retriev-
ing layer properties allows the creation of sub-models based
on the user selection. As described in figure 2, the model is
split into two parts, one containing the preceding layers of the
selection and the other containing the remaining part of the
model. To maintain the sub-models fundamental operation,
each layer is cloned from the original network to preserve the
available parameters.

The user-provided data set is propagated through the first
sub-network to obtain the input shape of the inspected latent
layer. Usually, this preliminary output is further propagated

to receive the final prediction, whereas, for the Latent Inspec-
tor, this output is utilized for visualizing the outcome as the
latent space in a scatter plot on the left side of the main screen.
If the user provides additional ground truth data within the
project, each dot of the plot representing a data point is addi-
tionally colorized to highlight data distribution. The tool pro-
vides common unsupervised dimension reduction techniques
like PCA, UMAP, or TSNE from the sklearn library to de-
crease the high dimensional output to displayable two dimen-
sions [Pedregosa et al., 2011]. Due to our universal approach,
each dimension reduction technology aims to provide the best
data representation by self-optimizing its parameters, consid-
ering the accompanying loss of information when transform-
ing into lower dimensions.

To realize our novel feature to interactively work with the
network, the latent space plot is designed to handle user
click events. If the selected dimension reduction algorithm
supports an inverse transformation, for instance, PCA and
UMAP, the coordinates of the created data point are reversely
scaled up into the inspected layer dimension and propagated
through the second sub-network containing the remaining
layers. The outcome of this process constitutes the model
prediction of the user click event, which can be visualized
through several predefined or customized components.

2.2 Use Case
A major difference between Latent Inspector and existing la-
tent space visualizers is that our tool hosts the trained model
and activates it with user-selected embedding values. Thus
our tool is an active framework, which others like Tensor-
board using only log file visualizations cannot achieve [Abadi
et al., 2015]. The user can trigger the network’s output from
any value at any latent layer through the interactive UI, re-
sulting in the ability for out-of-bounds inspection to verify
unknown or even impossible data points of real-world appli-
cations. Furthermore, we provide the option to save the prop-
agated data points to files for the creation of new data sets or
the refinement of existing ones.

To constitute the full potential of Latent Inspector, we
demonstrate the functionality of data generation with user in-
teractions in the case of classification based on an autoen-
coder feature extractor from the MNIST dataset [Bank et al.,
2020; Deng, 2012]. As emphasized with the green color in
figure 2, our tool provides an extended feature to train a Lo-
gistic Regression classifier based on the inspected layer. The
user needs to provide enough training and validation data be-
forehand to ensure proper classification. Again, our tool au-
tomatically adapts to the provided dataset with the help of the
sklearn library, allowing either binary or multi-class classifi-
cation [Pedregosa et al., 2011]. For the MNIST use case sce-
nario, the user input of the click event is propagated through
the autoencoder to reconstruct the image of a handwritten
number as well as through the trained classifier to label the
autoencoder’s output. Further, the user may manually modify
the classifier label output via a text box if the prediction is
incorrect, or to add new labels like for instance ”not a num-
ber”. The final result is stored in the tools project folder as a
labeled dataset.

Additionally to the MNIST project, we added the PAMAP

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Demonstrations Track

7128



Figure 3: System Structure of Latent Inspector based on general
front-end and back-end architecture

[Reiss and Stricker, 2012] and MoCaPose [Zhou et al., 2023]
projects as examples to validate our generalized and versatile
approach. Apart from the introduced features, Latent Inspec-
tor is designed to be expanded with more functionalities due
to its modular architecture.

3 System Structure
To achieve the above-mentioned functionalities and to keep
Latent Inspector open for additional features, we decided to
build the system with a common front-end and back-end ar-
chitecture. This separation circumvents the problem of cross-
origin resource sharing (CORS) policies when accessing the
file system directly through the front end, and further creates
the possibility of running the back end on outsourced systems
to match possible performance requirements.

The back end is based on Python and uses the Flask API
framework to communicate with the front end through the
IP network [Grinberg, 2018]. A new project is added to the
platform’s file system as a new folder, containing data sets,
the model to inspect, and additional outsourced functions to
allow custom data processing and visualizations. For the
moment, Latent Inspector accepts file formats of .json, .npy,
.mat, and .csv for the data sets and .h5 files for the network
model. Every arising processing is done in the back end to
minimize the front-ends performance requirement.

The front end uses Node.js along with Typescript as a basis
and the PlotlyJS library for our main components to visualize
data through interactive plots [Inc., 2015]. All together form
a responsive and fluently scaling web application.

As shown in figure 3, Latent Explorer is divided into three
parts following the idea of the above-mentioned functional-
ities: Starting with the setup process, the back end retrieves
and forwards project information from the file system to the
front end. After the user selection of the project and layer to
inspect, the preparation process starts by splitting the model,
propagating the dataset through the first sub-model, and re-
ducing the dimensions with one of the provided techniques
for visualization. Lastly, after the initial visualization is done,
the user can interact with the model by applying inverse di-
mension reduction and propagating the user input through the
remaining model layers.

All parts in the system have to follow one another, how-
ever, it is possible to jump back or iterate through parts of the
system again if the user triggers another click event or mod-
ifies the current selections. Some minor features of Latent
Inspector that do not affect the basic workflow are removed
in figure 3 to resolve complexity.

The whole project is designed to be bundled into exe-
cutable files. For the front end, we are using Electron as
a wrapper around the web application to generate a cross-
platform desktop application, and for the back end, we are us-
ing the python-based pyinstaller library. All relevant libraries
to run the system are packed inside the executable to enable
running on platforms without an integrated development en-
vironment.

4 Limitations and Outlook
4.1 Limitations
For the moment, Latent Inspector supports models with re-
gression, classification, or combinational outputs. Since the
tool needs to split the model at the inspected layer, it is only
applicable for models with a causal, linear relationship of se-
quential layers. Models with branched connections like for
instance the U-Net architecture with multiple direct input-to-
output layer connections are rejected by the tool. However,
models with localized branched connections such as ResNet
may still be used since Latent Inspector can unite it as one
layer without accessing the depth of the branches.

From the technical side, we require the model to be defined
through the Keras Framework and saved in a .h5 file with all
its trained weights [Chollet and others, 2015]. Furthermore,
the loss of information when applying dimensional reduction
techniques should be considered at any time. For PCA, the
accuracy is shown in the UI and can drop rapidly if strongly
high dimensional data sets are utilized. Speaking about the
dataset, there is a noticeable loss in the Latent Inspector’s
front-end performance when aiming to plot more than 10,000
data points due to the high plotting precision that is currently
applied.

4.2 Outlook
In the future, we will continue our generalized and versatile
approach to support more machine learning architectures and
development frameworks. Together with our modular system
architecture, we plan to extend our tool with additional fea-
tures like for instance interactive loss manipulation by drag-
ging data points in the latent space [Wei et al., 2022].

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Demonstrations Track

7129



References
[Abadi et al., 2015] Martı́n Abadi, Ashish Agarwal, Paul

Barham, Eugene Brevdo, Zhifeng Chen, et al. Tensor-
Flow: Large-scale machine learning on heterogeneous
systems. https://www.tensorflow.org/, 2015. Software
available from tensorflow.org.

[Bank et al., 2020] Dor Bank, Noam Koenigstein, and Raja
Giryes. Autoencoders. arXiv preprint arXiv:2003.05991,
2020.

[Chollet and others, 2015] François Chollet et al. Keras.
https://keras.io, 2015. Accessed: 2023-02-07.

[Deng, 2012] Li Deng. The mnist database of handwritten
digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

[Grinberg, 2018] Miguel Grinberg. Flask web development:
developing web applications with python. ” O’Reilly Me-
dia, Inc.”, 2018.

[Inc., 2015] Plotly Technologies Inc. Collaborative data sci-
ence. https://plot.ly, 2015. Accessed: 2023-02-07.

[Jung and Oh, 2021] Hyungsik Jung and Youngrock Oh. To-
wards better explanations of class activation mapping. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 1336–1344, 2021.

[Mohseni et al., 2021] Sina Mohseni, Niloofar Zarei, and
Eric D Ragan. A multidisciplinary survey and frame-
work for design and evaluation of explainable ai sys-
tems. ACM Transactions on Interactive Intelligent Systems
(TiiS), 11(3-4):1–45, 2021.

[Pedregosa et al., 2011] F. Pedregosa, G. Varoquaux,
A. Gramfort, V. Michel, B. Thirion, et al. Scikit-learn:
Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[Reiss and Stricker, 2012] Attila Reiss and Didier Stricker.
Introducing a new benchmarked dataset for activity moni-
toring. In 2012 16th international symposium on wearable
computers, pages 108–109. IEEE, 2012.

[Samek et al., 2017] Wojciech Samek, Thomas Wiegand,
and Klaus-Robert Müller. Explainable artificial intelli-
gence: Understanding, visualizing and interpreting deep
learning models. arXiv preprint arXiv:1708.08296, 2017.

[Wei et al., 2022] Jiafu Wei, Haoran Xie, Chia-Ming Chang,
and Xi Yang. Fine-tuning deep neural networks by inter-
actively refining the 2d latent space of ambiguous images.
In Lud De Raedt, editor, Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence,
IJCAI-22, pages 5948–5951. International Joint Confer-
ences on Artificial Intelligence Organization, 7 2022.
Demo Track.

[Zhou et al., 2023] Bo Zhou, Daniel Geißler, Marc Faul-
haber, Clara Elisabeth Gleiß, Esther Friederike Zahn, et al.
Mocapose: Motion capturing with textile-integrated ca-
pacitive sensors in loose-fitting smart garments. Proceed-
ings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 7(1), March 2023.

[Ziegler, 1996] James F Ziegler. Terrestrial cosmic rays.
IBM journal of research and development, 40(1):19–39,
1996.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Demonstrations Track

7130

https://www.tensorflow.org/
https://keras.io
https://plot.ly

	Introduction
	Functionality and Use Case
	Functionality
	Use Case

	System Structure
	Limitations and Outlook
	Limitations
	Outlook


