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Abstract

Plansformer is a novel tool that utilizes a fine-tuned
language model based on transformer architecture
to generate symbolic plans. Transformers are a
type of neural network architecture that have been
shown to be highly effective in a range of natural
language processing tasks. Unlike traditional plan-
ning systems that use heuristic-based search strate-
gies, Plansformer is fine-tuned on specific classi-
cal planning domains to generate high-quality plans
that are both fluent and feasible. Plansformer takes
the domain and problem files as input (in PDDL)
and outputs a sequence of actions that can be ex-
ecuted to solve the problem. We demonstrate the
effectiveness of Plansformer on a variety of bench-
mark problems and provide both qualitative and
quantitative results obtained during our evaluation,
including its limitations. Plansformer has the po-
tential to significantly improve the efficiency and
effectiveness of planning in various domains, from
logistics and scheduling to natural language pro-
cessing and human-computer interaction. In ad-
dition, we provide public access to Plansformer
via a website as well as an API endpoint; this en-
ables other researchers to utilize our tool for plan-
ning and execution. The demo video is available at
https://youtu.be/ 1rlctCGsrk.

1 Introduction
Large Language Models (LLMs) have revolutionized the field
of Natural Language Processing (NLP), outperforming hu-
mans in various natural language tasks [Vaswani et al., 2017;
Devlin et al., 2018; Brown et al., 2020; Scao et al., 2022;
Chowdhery et al., 2022; Li, 2022]. However, their use in do-
mains involving symbols, such as mathematics [Hendrycks
et al., 2021b; Cobbe et al., 2021], coding [Hendrycks et al.,
2021a; Chen et al., 2021], and automated planning [Lamanna
et al., 2023; Jiménez et al., 2012], has been limited due to
their inability to reason with symbolic data. In this paper, we

propose using LLM trained for code generation to generate
valid plans for automated planning domains.

To accomplish this, we create a training and test set for four
classical planning domains and use CodeT5 (base) [Wang
et al., 2021], a pre-trained code generation model, as the
LLM. We then present Plansformer, which is obtained by
fine-tuning CodeT5 on planning problems, making it capable
of generating symbolic plans of high quality. Our experimen-
tal results indicate that the syntactic and symbolic knowledge
learned from different programming languages in the CodeT5
model can be useful for the PDDL-based automated planning
task, achieving promising results in generating valid and op-
timal plans.

Plansformer is not intended to replace traditional auto-
mated planners, which are capable of generating valid or
optimal plans, but rather complement them. A Plansformer
can play to its benefit as a fast solver and has relaxation
in terms of correctness, while the traditional planner can
be used as a sound and complete solver, which is delib-
erative and always generates a correct output. This work
also explores LLMs’ capabilities in dealing with symbolic
language, revealing a promising direction to harness LLMs
for symbolic tasks such as planning. This is a signifi-
cant contribution as prior work [Valmeekam et al., 2022;
Silver et al., 2022] has shown that even state-of-the-art LLMs,
such as GPT-3 [Brown et al., 2020], cannot reason with sym-
bolic data.

2 Background and Methodology
Automated planning is a field of AI concerned with gener-
ating plans to achieve goals [Ghallab et al., 2004a; Ghal-
lab et al., 2004b]. Traditional approaches use search algo-
rithms but have scalability and uncertainty limitations [Ghal-
lab et al., 2014]. Learning-based approaches, leveraging ma-
chine learning, can overcome these limitations, learn from
data, generalize to new domains, and improve performance
[Veloso et al., 1995; Zimmerman and Kambhampati, 2003].
We present a comparison of traditional and learning-based
planning approaches in Table 2.

Plansformer, a learning-based planner is generated and
tested in two phases: modeling and evaluation. Fine-tuning
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Models Valid Plans (%) Invalid Plans Optimal Plans (%) Avg. Time (sec)
Failed (%) Incomplete/Wrong (%)

FastDownward (Ground
Truth)

100% - - 100% 10.28s

GPT-2 0% 0% 100% 0% 0.05s
T5-base 0.25% 17.3% 82.7% 0.25% 0.47s
Codex 0.15% 99.85% 0% 0.15% 1s
CodeT5-base 0.6% 0% 99.4% 0.6% 0.68s
Plansformer 83.64% 16.18% 0.19% 73.27% 0.06s
Plansformer-bw 90.04% 9.94% 0.02% 88.44% 0.05s
Plansformer-hn 84.97% 14.72% 0.31% 82.58% 0.05s
Plansformer-gr 82.97% 16.61% 0.42% 69.47% 0.06s
Plansformer-dl 76.56% 23.44% 0% 52.61% 0.09s

Table 1: Results of plan validation.

Criteria Traditional Planners Learning-based Planning
Representation Symbolic representation, logical reasoning Neural network-based, data-driven
Scalability Limited scalability, exponential growth of

state space
Scalable to large state spaces, can learn from large data
sets

Accuracy Can guarantee correctness, optimal solutions Prone to errors, suboptimal solutions
Generalization Limited ability to generalize to unseen do-

mains
Can generalize to unseen domains with sufficient training
data

Interpretability Human-understandable, explainable Lack of interpretability, black-box models
Efficiency Inefficient for large state spaces, computa-

tionally expensive
Can be more efficient than traditional planners, especially
for large state spaces

Table 2: Comparison of traditional and learning-based planning

the CodeT5 to address planning syntax and semantics for the
first phase, and evaluating the competency of Plansformer as
a language model and planner for the second phase. The se-
quence of actions generated by Plansformer are validates us-
ing both language based (e.g. ROUGE, BLEU) and planning
based metrics (e.g. validity, optimality).

2.1 Modeling Phase
In the modeling phase, we fine-tune CodeT5 by creating a
planning-based dataset. We focus on four classical plan-
ning benchmark domains from International Planning Com-
petitions [ICAPS, 2022; Younes et al., 2005; Long and Fox,
2003]: Blocksworld [Gupta and Nau, 1991], Towers of Hanoi
[Gerety and Cull, 1986], Grippers [Seipp et al., 2016], and
Driverlog [Roberts et al., 2014], each with multiple problem
instances. We generate optimal plans [Helmert and Domsh-
lak, 2011] for each problem instance using the FastDown-
ward planner [Helmert, 2006]. The generated dataset for each
domain contains 18,000 plans with different problem con-
figurations, and we use 5-fold cross-validation for training.
We use a Byte-level BPE tokenizer with a vocabulary size
of 32,005 and add PDDL-specific tokens ([GOAL], [INIT],
[ACTION], [PRE], [EFFECT]) to simplify the input to Plans-
former, which represents the goal state, initial state, possible
actions with their associated preconditions and effects caused
by the actions in the environment. CodeT5 is well-suited
for planning tasks as it can generate goal-directed, structured
code with semantic meaning. We fine-tune it with 80% of the
18,000 generated samples for each of the four domains in the
planning dataset.

2.2 Evaluation Phase
In the evaluation phase of Plansformer, the model is tested
for both plan validation and language model competency.
For plan validation, the sequence of actions generated by
Plansformer must guide an agent from the initial state to
the goal state for a given problem instance, and we evalu-
ate for optimality and validity using a plan validation tool
called VAL [Howey et al., 2004]. For language model com-
petency, we use metrics such as BLEU [Papineni et al., 2002]
and ROUGE-L [Lin, 2004] to measure precision and recall,
respectively. Although these metrics have no direct intuition
in automated planning, we use them to evaluate the task of
plan generation from the perspective of LLMs. The results of
these evaluations provide conclusive evidence on how well
Plansformer generates plans and its performance as a lan-
guage model.

3 System Demonstration
The website [Pallagani, 2023b] provides an easy-to-use inter-
face to exploit all the functionalities of Plansformer. It also
provides all the information to guide the user through the dif-
ferent features made available, for instance how to use and
leverage the various features and tools for editing and gener-
ating plans. On the landing page, the tool is introduced to the
user, along with instructions on how to use it. By clicking
on the editor button (in the menu bar), the user is directed to
the tool usage page. The website provides an intuitive PDDL
[Aeronautiques et al., 1998] editor, where the user can add or
edit code files as per their requirements. Figure 1 provides an
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Figure 1: Screenshot of the editor page.

example of the editor page with the Blocksworld domain in
PDDL.

For the user’s convenience, the website offers a reference to
some problem instances from the four domains under study.
Furthermore, the user can create new files on the website or
upload files from their local system. To facilitate the user’s
experience, the website also offers the functionality of saving
files from the Plansformer tool to their local file storage.

The solve functionality is the next step in the user jour-
ney. To initiate the plan generation process, the user needs
to choose a domain and its corresponding problem file. The
website provides an optional plan validity checker, which en-
ables the user to know the validity and optimality character-
istics of the generated plan. Once the solution is obtained,
the output is displayed, and the user is shown the generated
plan, a summary of the selected domain and problem, along
with the validation results if requested. Researchers can also
leverage the API to use Plansformer for their work [Pallagani,
2023a], in order to use the API endpoint domain and problem
files must be specified as input, as reported in Listing 1

Listing 1: Example API Request

c u r l −X POST \
−H ’ Conten t −Type : m u l t i p a r t / form − da ta ’\
−F ’ domain=@/ p a t h / t o / domain . pddl ’ \
−F ’ problem =@/ p a t h / t o / problem . pddl ’ \
h t t p : / / 1 2 9 . 2 5 2 . 1 3 1 . 1 3 / p l a n s f o r m e r /

Sometimes users may experience some delays in the com-
putation of a solution. The website is implemented for
demonstration purposes and it is based on a basic server.
This is the reason for the increased latency of plan genera-
tion in the demo website which can leverage only on CPUs
for the computation of a solution. The website is inspired by
the well-known online planning tool [Muise, 2015], which
should help users in getting familiar with our solution.

4 System Evaluation
Plansformer is evaluated on multiple planning domains of
varying complexities using both quantitative and qualitative
measures. For model evaluation, Plansformer is compared

Models ROUGE-Lrecall ROUGE-Lprecision ROUGE-Lfmeasure BLEU
GPT-2 0.04 0.14 0.06 0.07
T5-base 0.16 0.70 0.26 0.02
Codex 0.72 0.52 0.60 0.36
CodeT5-base 0.41 0.28 0.33 0.02
Plansformer 0.93 0.93 0.93 0.89
Plansformer-bw 0.97 0.99 0.98 0.90
Plansformer-hn 0.99 0.96 0.97 0.95
Plansformer-gr 0.94 0.94 0.94 0.92
Plansformer-dl 0.82 0.83 0.82 0.79

Table 3: Results of model testing (best performance in bold).

with other language models using the model evaluation met-
rics (ROUGE and BLEU) and the results as seen in Table 3,
show that Plansformer outperforms all other models, includ-
ing Codex [Chen et al., 2021]. However, for plan validation,
FastDownward, a traditional classical planning system is also
added to the test-bed. Plans generated by Plansformer are
evaluated for validity and optimality, and the results as seen
in Table 1, show that Plansformer performs best in simple
planning domains (such as blocksworld) but generates fewer
optimal plans in complex domains (such as driverlog). The
paper reports that the average time taken by Plansformer to
solve the test-bed of problems is approximately 200 times
faster than the FastDownward planner 1. The study by [Palla-
gani et al., 2022] provides a comprehensive account of the ex-
perimental methodology and outcomes achieved through the
application of Plansformer, offering an in-depth analysis of
the results obtained.

5 Conclusion
In this demonstration, we have showcased a novel tool that
leverages an LLM for generating and validating plans for
classical problems in four selected domains. As a next step,
we are actively expanding the tool’s applicability to various
other planning domains, aiming to enhance its generalizabil-
ity and versatility. In future iterations, we plan to extend the
tool’s capabilities to address more complex planning scenar-
ios, including epistemic and hierarchical planning. Addition-
ally, we aim to enable the tool to automatically repair invalid
plans, and to enhance its visual output to facilitate easier plan
interpretation and analysis.

1when used with GPU capabilities
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