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Abstract
Automated machine learning (AutoML) has been
widely researched and adopted for supervised prob-
lems, but progress in unsupervised settings has
been limited. We propose “LOTUS”, a novel
framework to automate outlier detection based on
meta-learning. Our premise is that the selection of
the optimal outlier detection technique depends on
the inherent properties of the data distribution. We
leverage optimal transport to find the dataset with
the most similar underlying distribution, and then
apply the outlier detection techniques that proved
to work best for that data distribution. We evaluate
the robustness of our framework and find that it out-
performs all state-of-the-art automated outlier de-
tection tools. This approach can also be easily gen-
eralized to automate other unsupervised settings.

1 Introduction
AutoML [Hutter et al., 2019] has shown robust and reli-
able performance in model selection and hyperparameter op-
timization [Hutter et al., 2019; Feurer et al., 2015]. How-
ever, research in automated machine learning has been highly
focused on supervised machine learning, where we can use
model performance evaluated on a held-out validation set as
a ground truth metric to optimize while searching over the
model search space [Thornton et al., 2013]. Unsupervised
settings lack such a ground truth, hence AutoML research in
this area is rather sparse. Outlier detection (OD) is an exam-
ple of one of these unsupervised problems. It aims to identify
data points that are significantly different from the rest of the
data. These outliers can be caused by errors in the data col-
lection process, incorrect values, or unusual events. Detecting
these allows us to improve the quality of the data or help find
unusual events that could be interesting to different business
and scientific domains.

In this work, we propose a novel AutoML framework for
unsupervised tasks that leverages meta-learning [Vanschoren,
2018] and optimal transport [Peyré and Cuturi, 2019; Scetbon
and Cuturi, 2022] to transfer information from similar prior
datasets (or synthetic datasets) on which outliers are known.
We call this framework Learning to learn with Optimal
Transport for Unsupervised Scenarios, or LOTUS.

In this work, we make the following three contributions:
• A Meta-learner for outlier detection: We propose

a state-of-the-art meta-learning technique that recom-
mends outlier detection algorithms for a given dataset,
based on a collection of historical datasets and prior ex-
periments.

• Open source code and demo We open-source the code
for LOTUS for researchers to use and reproduce our ex-
periments. Our tools can be easily extended with ad-
ditional algorithms and meta-data. We also provide a
graphical interface for quick experimentation.

• AutoML tool integration: We provide an extension to
the AutoML library GAMA [Gijsbers and Vanschoren,
2021], called GAMA-OD, that allows GAMA to solve
outlier detection tasks using LOTUS. It includes an ex-
tensive model search space for outlier detection tasks, as
well as tools to collect rich metadata on outlier detection
performance across many datasets.

2 AutoML for Outlier Detection
AutoML for outlier detection is an extremely hard problem
due to the lack of a ground truth optimization metric [Bahri
et al., 2022]. One can argue that the use of internal met-
rics such as Excess-Mass [Goix, 2016], Mass-Volume [Goix,
2016], and IREOS [Marques et al., 2015] can be used in-
stead. However, it has been shown that these internal met-
rics are computationally very expensive and do not scale well
to large datasets [Ma et al., 2021]. This makes it unfea-
sible to use these metrics in AutoML tools for most real-
world scenarios, especially since AutoML algorithms per-
form many evaluations. In this work, we focus on tabu-
lar data, which has a considerably higher variance between
datasets than image data, making it harder to find an opti-
mal OD strategy. Tabular data is also common in indus-
trial applications such as fraud detection [Cartella et al.,
2021] and network anomaly detection [Datta et al., 2022;
Liang et al., 2022]. Table 1 summarizes how LOTUS com-
pares to related AutoML approaches that either use meta-
learning or OD. Of these, the most related is MetaOD [Zhao
et al., 2021], which is the current state-of-the-art technique
for outlier detection on tabular data. PyODDS [Li et al.,
2020] is a related framework but it requires ground truth data
to select specific OD techniques.
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Technique Meta-learning approach Unsupervised Tasks Use
AutoSklearn 2.0 [Feurer et al., 2020] Pipeline Portfolios ✗ warm-starting

FLAML [Wang et al., 2021] Built-in metafeatures ✗ warm-starting
MetaBu [Rakotoarison et al., 2022] Metafeatures (with labels) + FusedGW ✗ warm-starting

MetaOD [Zhao et al., 2021] Metafeatures + CF Outlier detection only model selection
LOTUS (Ours) Preprocessing + GWLR ✓ model selection

Table 1: Comparison of different meta-learning AutoML frameworks

Figure 1: An overview of LOTUS. The top part corresponds to the meta-training phase, and the bottom part to the meta-testing phase.

3 Methodology
The LOTUS algorithm consists of a meta-training phase,
which finds the optimized algorithms A∗

λ∗ for every prior
dataset Di, and a meta-testing phase that predicts the opti-
mal algorithms for new, unseen tasks. The overall algorithm
is illustrated in Figure 1, and the pseudo-code for each phase
is shown in Algorithm 1 and 2, respectively.

3.1 Meta-training
Problem Statement: Given a new dataset without any la-
bels, our meta-learner needs to select an optimal algorithm
with associated hyperparameters from a collection of previ-
ously evaluated algorithms. Since we cannot further optimize
the given model on the new dataset this is a zero-shot model
recommendation problem, unless some (downstream) evalua-
tion metric is available.

Formally, given a new unlabeled dataset Dnew = (Xnew),
select a model A∗

λ∗ ∈ A to employ on Xnew, where A∗
λ∗

is the optimal model with tuned hyperparameters λ∗ for the
dataset Di that is most similar to Xnew.
Problem Formulation: For supervised tasks, this problem
can be represented as a Combined Algorithm Selection and
Hyperparameter optimization (CASH) problem [Thornton et
al., 2013], stated in equation 1, where A∗

λ∗ is the combina-
tion of the optimal learning algorithm from search space A
with associated hyperparameter space ΛA evaluated over k
cross-validation folds of dataset D = {X, y} with training
and validation splits. L is our evaluation measure.

A∗
λ∗ = argmin

∀Aj∈A
∀λ∈ΛA

1

k

k∑
f=1

L
(
Aj

λ,
{
Xtrain

f ,ytrain
f

}
,
{
Xval

f ,yval
f

})
(1)

The CASH problem from Equation 1 relies on the valida-
tion split to optimize for the optimal configuration. However,
in unsupervised settings, such validation splits are not rele-
vant. We run estimators on all unlabeled data, and use the
ground truth labels only to evaluate them, as shown in Al-
gorithm 1. Our modified CASH formulation to select the
optimal unsupervised algorithm with access to labels is as
follows:

A∗
λ∗ = argmin

∀Aj∈A
∀λ∈ΛA

L
(
Aj

λ,
{
X}

{
y
})

(2)

To collect the necessary meta-data, we developed GAMA-
OD, an extension to the popular AutoML tool GAMA [Gijs-
bers and Vanschoren, 2021].

3.2 Meta-testing
Our premise is that, if a prior dataset exists that is very simi-
lar to the new dataset, then its optimal algorithms will likely
work well on the new dataset. We consider two datasets
similar if they have the same underlying data distribution,
which we measure using Optimal Transport [Peyré and Cu-
turi, 2019].

We first require a preprocessor ϕ, which is necessary to
make input dataset compatible with the OT distance function.
This preprocessing can involve the normalization of pixels in
raw image data, encoders and scalers in tabular data. Next, we
calculate the dataset similarity O based on Gromov Wasser-
stein [Peyré and Cuturi, 2019]:

O = GW (ϕ(Da), ϕ(Db)) (3)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Demonstrations Track

7176



Algorithm 1 Pseudocode for Meta-training

Inputs: Dmeta, L,A,ΛA

1: while Di ∈ Dmeta do
2: A∗

λ∗i ← argmin∀Aj∈A
∀λ∈ΛA

L
(
Aj

λ,
{
X}

{
y
})

3: A ← A∗
λ∗i

4: end while

Algorithm 2 Pseudocode for LOTUS (meta-testing)

Inputs: Dnew,Dmeta,A
1: while Di ∈ Dmeta do
2: Oi ← GWLR(ϕ(Dnew, Di)){Distance calculation}
3: end while
4: s ← argmin{O1, ...,On}{Retrieval of most similar

dataset}
5: A∗

λ∗
new
← A∗

λ∗
s
{Model Selection}

We adopt the Low-Rank Gromov-Wasserstein dis-
tance [Scetbon and Cuturi, 2022] on these preprocessed
datasets for faster computation, as summarized in Equation
4, where r is the selected rank hyperparameter for distance
computation.

O = GW-LR(r)(ϕ(Da), ϕ(Db)) (4)

The most similar prior dataset Dsimilar ∈ Dmeta is the
dataset with the smallest distance to the new dataset Dnew.

LOTUS then assigns the optimal configuration from A:
A∗

λ∗
new

= A∗
λ∗
s

where A∗
λ∗
s

is predicted as the optimal config-
uration for Dnew, as also shown in Algorithm 2. The Python
code for using LOTUS is shown in Listing 1.

Listing 1 Example code for using LOTUS.

from lotus import LotusMetaData
from lotus import LotusModel

md = LotusMetaData(
data_list, 'accuracy',
dataloader = dataloader,
out = 'csv')

md.create_lotus_metadata()
dataset = new_dataset

model = LotusModel(
new_dataset=dataset,
meta_data_obj=md,
distance = 'gwlr',
preprocessing = 'ica')

best_model, distance, score =
model.find_model()

Estimator p(LOTUS) p(rope) p(Estimator)
MetaOD 0.740 0.074 0.186
ABOD 1.0 0.0 0.0

OCSVM 1.0 0.0 0.0
LODA 1.0 0.0 0.0
KNN 1.0 0.0 0.0

HBOS 999.82·10−3 0.0 0.18·10−3

IForest 999.54·10−3 0.0 0.46·10−3

COF 1.0 0.0 0.0
LOF 1.0 0.0 0.0

Table 2: Rope testing results with LOTUS vs PyOD baselines with
rope=1% (Higher is better)

4 Experimental Setup
To evaluate LOTUS, we use ADBench [Han et al., 2022]
which is a comprehensive tabular anomaly detection bench-
mark on 57 datasets. GAMA-OD uses an asynchronous evo-
lutionary algorithm to iterate over the search space and re-
turn the optimal pipeline. We use the area under the ROC
curve (AUC) as the optimization metric L during the search
phase. We use standard anomaly detection algorithms from
PyOD [Zhao et al., 2019], which is the largest outlier detec-
tion library in Python. We use these algorithms with default
hyperparameters as additional baselines.

5 Results and Discussion
We use the Bayesian Wilcoxon signed-rank test (or ROPE
test [Benavoli et al., 2017; Benavoli et al., 2014]) to analyze
the results of our experiments. We first compare the results
with the state-of-the-art(MetaOD) and then other baselines.

LOTUS vs MetaOD (State-of-the-Art)
We show the pairwise comparison of LOTUS and MetaOD
using the ROPE test in Table 2. We find that, based on
experiments, there is a 74.0 % probability(p(LOTUS) =
0.74) that LOTUS will outperform MetaOD. p(LOTUS) >
p(MetaOD) shows that LOTUS is more robust.

LOTUS vs PyOD Baselines
The results of the ROPE test comparing LOTUS with indi-
vidual outlier detection techniques are summarized in Table
2. LOTUS proves to be significantly better than all other tech-
niques, with default parameters. In this case p(LOTUS) >>
p(Estimator).

6 Conclusion
We propose an easy-to-use zero-shot-model-recommendation
AutoML tool for outlier detection which uses Gromov-
Wasserstein distances to find the optimal outlier detection al-
gorithms on a given task, based on previously learned meta-
knowledge. We show via experiments and analyses that our
approach is robust and outperforms current state-of-the-art al-
gorithms. In future work, we will extend this work to other
unsupervised scenarios such as clustering, covariance estima-
tion, and distance metric learning.
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