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Abstract
The explosive popularity of smart manufacturing
has caught the attention of researchers in terms of
intelligent mold processing and management. Mold
component machining is a crucial step in the mold
production process for many industries, which pro-
duces the individual parts (e.g., core pins, ejec-
tor pins, cavities, slides, and lifters) that make up
a mold used in manufacturing. We present IMP-
sys, an AI-based system that automatically explores
machining jobs, infers their processing time and
schedules them on machines, given numerous 3D
modelling files of mold components. Our demo
video can be found at: http://bit.ly/3EeKnyL

1 Introduction
Smart manufacturing, an interdisciplinary paradigm linking
Artificial Intelligence (AI) and manufacturing, facilitates the
innovation of traditional production environment in recent
years. Under this guiding trend, mold manufacturing facto-
ries are attempting to advance manufacturing technologies by
applying the advanced smart manufacturing technologies tar-
geted at improving mold manufacturing efficiency, reducing
human labors and production costs, and enhancing market
competitiveness.

Previous researches on intelligent mold manufacturing
focus on assistance of accomplishing 3D mold develop-
ment [Kim et al., 2003; Jong et al., 2009], draft verifi-
cation [Yeon et al., 2005], quality control [Sadeghi, 2000;
Choi et al., 2010], smart injection molding [Lee et al., 2017;
Kumar et al., 2020], smart manufacturing workshop frame-
work [Zheng and Ming, 2017] and reuse of standard parts
[Mok et al., 2011]. Different from the aforementioned works
that focus on the molding injection process, we look into the
overall streamline of machining mold components that refers
to the processes of using machines to shape and fabricate var-
ious components of a mold.

Towards developing an integrated and automated mold ma-
chining management system for factories, we identify three
primary functions which ever have been the workloads of hu-
man experts and implement them with recent AI techniques.

∗Corresponding author.

• Job Explorer (JE). The machining process involves
cutting, drilling, and shaping metal. Given a 3D model of
a mold component (typically designed using CAD soft-
ware), the system is able to indicate which part of the
model should be processed by a specific machining type
(grinding, EDM, etc.).

• Process Time Inferrer (PTI). The system should fore-
cast the machining time consumed by each equipment to
process the machining parts identified by JE. The system
needs to be capable of storing, retrieving and modifying
the predicted time for the subsequent job scheduling.

• Job Scheduler (JS). The system should schedule the
machining procedures of mold components according to
available devices and the pre-determined machining or-
ders (for example, grinding must be performed before
EDM1).

In this demo, we present IMPsys: Intelligent Mold
Processing System, integrating all the abovementioned func-
tions for smart factories to easily manage the entire mold
component machining streamlines. We extend YOLOv5 for
JE to discover the machining parts of 3D models and indicate
corresponding machining types. We devise a multivariate re-
gression model for PTI, which is delicately designed for in-
ferring process time of each machining procedures. Finally,
a greedy algorithm is employed for job scheduling. IMPsys
has been deployed in UJU Electronics, a factory located in
the Republic of Korea, innovating its production environment
that had been heavily relying on human labor.

2 System Overview
IMPsys is developed under an environment that is consisted
with Bootstrap 4.6, jQuery 3.3, Django 3.2 and MySQL 8.0.
RESTful APIs are particularly applied to support complicated
data processing across frontend and backend. To balance the
network load, manage the processes, and supervise the gate-
way of the system, we additionally utilize uWSGI and Ng-
inX in terms of high concurrency. Figure 1 demonstrates the
system overview of IMPsys with key components including
but not limited to Job explorer (JE), processing time inferrer
(PTI), and job scheduler (JS). The technical details for each

1The order might vary depending on the specific design and re-
quirements of the mold components.
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Figure 1: System Overview of IMPsys. There are six types of machining: grinding electrodes (A), grinding (B), electrical discharge machining
(EDM) (C), EDM electrodes (D), high-speed machining (E), and wire EDM (WEDM) (F). Given 3D modelling files of mold components, JE
tries to label specific areas with their machining types; PTI infers the machining duration of every job (in hours); then the JS module schedules
the jobs on equipments. When users interact with the system front, each network request goes through the firewall and network load balancer,
and is assigned to an arbitrary service by the balancer. Either master service or worker service(s) connects with three components: one node of
the database (DB) cluster, message queue, and message queue consumers (i.e., threads for holding algorithms). A message queue is employed
to contain time-series molds and jobs, and its consumers are customized for dealing for tasks JE, PTI, and JS.

key component are summarized in the following subsections
respectively.

2.1 Job Exploration
Given 3D modeling files of mold components corresponding
to client orders, this component aims at figuring out which
type of machining (e.g., EDM, WEDM, and grinding) should
be performed on each given model. Since directly labeling on
3D models is a tough task, we made a transformation from 3D
model labelling to object detection on 2D images. To this end,
we constructed a dataset including 3,108 2D images origi-
nated from 518 3D mold files (6 side views in 6 directions for
each 3D model). Each image may include bounding boxes
around the machining locations together with their identified
machining types, annotated by human experts. We also re-
flected depth (concavity) in the 3D model obtained from each
viewpoint, since the feature plays an important role in figur-
ing out machining types.

As JE is deemed as an object detection task, we then opted
to tailor and train a state-of-the-art model–YOLOv5 [Jocher
et al., 2022]–with the dataset constructed. We observe that
the trained model achieved a perfect accuracy in terms of ma-
chining part detection as well as machining type identifica-
tion, which results in a successful implementation of JE.

2.2 Process Time Inference
After figuring out which types of machining should be per-
formed, this component predicts process time for each ma-
chining type of each mold. To solve this regression problem,

we typically defined several useful features that can be ex-
tracted from 3D models as follows: volume size, the number
of points and cells, and cut volume size (we measured this by
computing the difference between the rectangular volume that
is surrounding the model and its actual volume.). In addition,
the 3D model is represented by generating the 2D 24×24 us-
ing Principal Component Analysis (PCA), from each view of
the model. Through this, the key parts of the model are high-
lighted in the images. Finally the embeddings of these images
are used as additional features.

Based on the aforementioned features, we constructed a
dataset where a data instance, generated from a 3D model,
consists of the extracted features as model inputs and the
type-specific process time provided by factory workers as the
target outputs. We trained a multivariate regression model on
our dataset, and observe that it achieved a prediction time er-
ror of less than 0.5 hours.

2.3 Job Scheduling
Job scheduling brings forward the timelines of machining
jobs under conditions prescribed by devices, mold compo-
nents, and prior knowledge of machining. Here, the procedure
standing for a triplet <mold component, machining type, pro-
cess time> is regarded as a job in the Job-Shop Scheduling
Problem (JSSP) [Juvin et al., 2022]. The constraints, in this
case, include a device’s latest working time, a mold com-
ponent’s latest acquirable time, machining orders of mold
components, unappointed devices, pre-defined processing se-
quences of machining types (for example, A mold should
be processed by following the sequence B → C → F )
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Figure 2: Task board for showing task details.
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Figure 4: Timelines for showing machining-type-based schedules.
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Figure 5: Timelines for showing task-based schedules.

and device efficiency. We followed the concept of exhaust-
ing greediness in local optimum: assigning jobs to the latest
available devices depending on processing sequences of ma-
chining types where the jobs are ordered by mold privileges.

Our initial step is to generate a machine idleness timetable
and a mold component idleness timetable based on the cur-
rent timelines. The corresponding jobs are distinctly ordered
according to the fixed sequences of machining types and the
idleness timetables. The system then derives the finish time
according to the constraints of the devices and mold compo-
nents themselves. Since the finish time is fetched, it is also
considered as the latest idle time of both the corresponding
device and the mold component, and thus timetables are up-
dated. By iterating the jobs and assigning them to devices, all
the jobs can be retrieved and scheduled recursively.

3 Use Cases
Figures 2−5 display four main web pages in our system. All
the pages in IMPsys are comprised of two modules: a navi-
gational bar on the left and a content block on the right. We
illustrate the contents in each web page as follows:

• Task board. The page shown in Figure 2 is tailored to show
digital information of an arbitrary task or a list of tasks, in-
cluding task ID, task title, corresponding mold components
and their process time (if the task is processed by JE and
PTI), the status of whether the task is predicted and whether
it is scheduled, etc. We also provide several buttons to sup-
port various functions: adding new task, managing existed
tasks, downloading task table as an Excel file, modifying
current task information, processing current task with JE
and PTI, and scheduling. Specifically, the button ‘Predict’
is designed for asynchronously processing JE and PTI on

current client order (task); the button ‘Schedule’ is cus-
tomized to schedule the corresponding jobs instantly.

• Device board. Device board as shown in Figure 3 is typi-
cally developed for retrieving and managing equipment in-
formation. Users can add new machines by clicking ‘Add’
and then navigating to the form page. Meanwhile, it is also
possible for factory workers to update the information of a
single device, or update the work time of all devices by the
‘Modify’ and ‘Modify All’ buttons respectively.

• Timelines. Under consideration of the fact that different
staffs focus on different types of the job schedules, IMP-
sys provides two kinds of timelines: machining-type-based
Gantt chart (Figure 4) and task-based Gantt chart (Figure
5). The former can filter scheduled jobs with time ranges,
start date, and machining types while the latter is capable of
drawing a set of scheduled jobs corresponding to a task re-
stricted by time range, start time for filtering and machining
types.

4 Conclusion

This demo paper presents IMPsys, an AI-based system that
smartly manages the overall streamlines of mold component
machining, from 3D modeling files to job scheduling. Our
system equips with three core components, aiming at explor-
ing jobs, inferring process time, and scheduling the jobs, re-
spectively. IMPsys is completely novel and innovative in the
mold manufacturing domain, replacing what were tradition-
ally conducted by human labor. IMPsys has been successfully
deployed in the factory in South Korea, UJU Electronics, and
has been significantly improving mold processing efficiency
as well as reducing human labors and production costs.
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