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Abstract
Multi-objective search can be used to model many
real-world problems that require finding Pareto-
optimal paths from a specified start state to a speci-
fied goal state, while considering different cost met-
rics such as distance, time, and fuel. The perfor-
mance of multi-objective search can be improved
by making dominance checking—an operation nec-
essary to determine whether or not a path domi-
nates another—more efficient. This was shown in
practice by BOA*, a state-of-the-art bi-objective
search algorithm, which outperforms previously
existing bi-objective search algorithms in part be-
cause it adopts a lazy approach towards dominance
checking. EMOA*, a recent multi-objective search
algorithm, generalizes BOA* to more-than-two ob-
jectives using AVL trees for dominance checking.
In this paper, we first propose Linear-Time Multi-
Objective A* (LTMOA*), a multi-objective search
algorithm that implements more efficient domi-
nance checking than EMOA* using simple data
structures like arrays. We then propose LazyLT-
MOA*, which employs a lazier approach by remov-
ing dominance checking during node generation.
Our experimental results show that LazyLTMOA*
outperforms EMOA* by up to an order of magni-
tude in terms of runtime.

1 Introduction and Related Work
Multi-objective search can be used to model many real-world
problems that involve planning paths with more than one
cost metric, such as distance, time, and fuel. Each objec-
tive corresponds to minimizing a specific cost metric. Exam-
ples of such real-world problems include planning of power-
line routes in energy transmission domains [Bachmann et al.,
2018], balancing travel distance and risk of exposure when
transporting a hazardous material [Bronfman et al., 2015],
and inspecting a region of interest using cameras placed on-
board robotic platforms [Fu et al., 2019; Fu et al., 2021].
While single-objective search produces shortest paths with
respect to a single cost metric, it needs to be efficiently

generalized to multi-objective search for the aforementioned
real-world problems. Generally, the desired output of multi-
objective search is a set of non-dominated paths with respect
to the different cost metrics.

More formally, in multi-objective search, we are given a
directed graph with multiple costs annotating each edge, a
specified start state, and a specified goal state. A path π is
considered to be better than, i.e., to dominate, another path
π′ if and only if π is not worse than π′ on any cost metric and
π is better than π′ on at least one cost metric, and a Pareto-
optimal solution is a path from the start state to the goal state
that are not dominated by any path from the start state to the
goal state. We are interested in computing the Pareto-optimal
solution set, that is, the set of all Pareto-optimal solutions.

Importantly, different variants of the problem exist such as
approximating the Pareto-optimal solution set [Salzman and
Goldin, 2021; Zhang et al., 2022b; Pangilinan and Janssens,
2007; Li et al., 2015] and computing the Pareto-optimal so-
lution set in an anytime manner [Zhang et al., 2022a]. Re-
searchers have also computed a single solution in the Pareto-
optimal solution set given bounds on its cost [Skyler et al.,
2022] and using bi-directional search [Ahmadi et al., 2021].
However, these are out of the scope of the paper.

Existing algorithms for computing the Pareto-optimal so-
lution set include NAMOA* [Mandow et al., 2005; Mandow
and De La Cruz, 2010], NAMOA* with dimensionality re-
duction (NAMOA*dr) [Pulido et al., 2015], Enhanced Multi-
Objective A* (EMOA*) [Ren et al., 2022], and Bi-Objective
A* (BOA*) [Hernández et al., 2023]. All of these algorithms
perform dominance checks to determine if a path from the
start state to a specific state has the potential to be extended
to a Pareto-optimal solution. However, they differ in how the
dominance checks are implemented and interleaved with the
search. Both NAMOA* and NAMOA*dr can be used for any
number of objectives and perform dominance checks eagerly:
Every time they generate a path to a specific state, they ea-
gerly check if this path is dominated by any previously gen-
erated path to the same state, which involves time-consuming
operations that iterate over generated paths. BOA* shows that
some of these time-consuming operations can be alleviated
using a lazy approach for dominance checks and performs
all dominance checks in constant time by doing so. However,
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it is restricted to solving problems with only two objectives.
The recently proposed EMOA* algorithm generalizes the lazy
dominance checks of BOA* to more than two objective. For
problems with three objectives, it uses AVL trees and per-
forms dominance checks in logarithmic time when generating
a path.

In this paper, we first investigate different data struc-
tures that can be used for dominance checks and pro-
pose Linear-Time Multi-Objective A* (LTMOA*), an multi-
objective search algorithm that implements a more efficient
dominance checking than EMOA* using simple data struc-
tures like arrays. We then propose an even “lazier” approach
towards dominance checking than those of EMOA* and LT-
MOA*. The resulting algorithm, LazyLTMOA*, distinguishes
from EMOA* and LTMOA* by removing dominance check-
ing during node generation and only performing dominance
checking when a path is selected for expanding.

We evaluate LTMOA* and LazyLTMOA* on road network
instances with up to five objectives. Empirically, we show that
LazyLTMOA* is about 60% faster than LTMOA* due to less
dominance checking. With our efficient dominance checking
approach, LazyLTMOA* substantially outperforms EMOA* by
up to an order of magnitude in terms of runtime.

2 Notation and Problem Definition
A multi-objective search graph is a tuple (S,E, c), where S
is the finite set of states, E ⊆ S × S is the finite set of edges,
and c : E → (R≥0)

n is a cost function that associates an
n-tuple of non-negative real costs with each edge, where n is
the number of components. Succ(s) = {t ∈ S | (s, t) ∈ E}
denotes the successors of state s. A path π from s1 to sm is a
sequence of states s1, s2, . . . , sm such that (si, si+1) ∈ E for
all i ∈ {1, . . . ,m− 1}.

Boldface font is used to represent n-tuples. Unless de-
fined otherwise, we assume a n-tuple v has the form v =
(v1, v2, . . . , vn), thus vi denotes the i-th component of an n-
tuple. The addition of two n-tuples u and v and the multipli-
cation of a real-valued scalar k and a tuple u are defined in
the natural way; that is, u+ v = (u1 + v1, . . . , un + vn) and
ku = (ku1, . . . , kun). c(π) =

∑m−1
i=1 c(si, si+1) is the cost

of path π = s1, . . . , sm.
Given two n-tuples u and v, we say that u weakly dom-

inates v, denoted as u ⪯ v, if vi ≤ ui holds for every
i ∈ {1, . . . , n}. We say u dominates v, denoted as u ≺ v, if
u ⪯ v and u ̸= v hold. We say that path π dominates (resp.
weakly dominates) path π′, denoted as π ≺ π′ (resp. π ⪯ π′)
if c(π) ≺ c(π′) (resp. c(π) ⪯ c(π′)).

A search instance is defined as a tuple P =
(S,E, c, sstart, sgoal), where (S,E, c) is a search graph and
sstart, sgoal ∈ S are the start and goal states, respectively.
Given a search instance P , a Pareto-optimal solution set
to sgoal (from sstart), denoted as sols(sgoal), contains every
path π from sstart to sgoal with the property that, for every other
path π′ from sstart to sgoal, π′ ̸≺ π holds; that is, sols(sgoal)
contains all non-dominated paths from sstart to sgoal. In this pa-
per, we aim to find any maximal subset of the Pareto-optimal
solution set such that each solution in the subset has a unique

Algorithm 1: NAMOA*
Input : A search problem (S,E, c, sstart, sgoal) and a consistent

heuristic function h
Output: A cost-unique Pareto-optimal solution set

1 sols← ∅
2 for each s ∈ S do
3 Gop(s)← ∅; Gcl(s)← ∅
4 x← new node with s(x) = sstart
5 g(x)← zero in all dimensions
6 Add g(x) to Gop(s(x))
7 p(x)← null
8 f(x)← h(sstart)
9 Initialize Open and add x to it

10 while Open ̸= ∅ do
11 Extract a node x from Open with the lexicographically

smallest f -value
12 Remove g(x) from Gop(s(x))
13 if IsDominated(f(x), Gcl(sgoal)) then
14 continue
15 Add g(x) to Gcl(s(x))
16 if s(x) = sgoal then
17 Add x to sols
18 continue
19 for each t ∈ Succ(s(x)) do
20 x′ ← new node with s(x′) = t
21 g(x′)← g(x) + c(s(x), t)
22 p(x)← x
23 f(x′)← g(x′) + h(t)
24 if IsDominated(g(x′),Gcl(t) ∪Gop(t)) or

IsDominated(f(x′),Gcl(sgoal)) then
25 continue
26 UpdateOpen(x′)

27 return sols

Algorithm 2: IsDominated
Input : A vector v and a set of vector V
Output: true or false

1 for each v′ ∈ V do
2 if v′ ⪯ v then
3 return true

4 return false

cost of path. We refer to this subset as a cost-unique Pareto-
optimal solution set.

A heuristic function h maps each state s in S to a n-tuple in
(R≥0)

n domain that estimates the cost of a path from state s
to sgoal. Given a heuristic function h, the h-value of state s
is denoted as h(s). h is admissible iff h(s) ⪯ c(π) holds
for every state s and every path π that traverses s from sstart
to sgoal. Similarly, h is consistent iff (i) h(sgoal) = 0 and
(ii) h(s) ⪯ c(s, t) + h(t) for every (s, t) ∈ E. That is, all
components of h are consistent for the corresponding com-
ponents of the cost function.

3 Algorithmic Background
We now describe the multi-objective search algorithms that
form the building blocks for our new algorithm. All algo-
rithms perform a best-first search and compute a cost-unique
Pareto-optimal solution set for a given search instance. Thus,
we start with general notations and assumptions that will be
used for all algorithms (including our own) and then describe
each algorithm while highlighting the differences. All the al-
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Algorithm 3: UpdateOpen
Input : A node x
Output: Open and Gop(s(x)) updated

1 for each g′ ∈ Gop(s(x)) do
2 if g(x) ⪯ g′ then
3 Remove g′ from Gop(s(x))
4 Remove nodes corresponding to g′ from Open

5 Add g(x) to Gop(s(x))
6 Add x to Open
7 return

gorithms maintain an Open list, containing the frontier of the
search tree (i.e., the generated but not-yet-expanded nodes)
and a set of solutions sols. Here, a node x is associated with
a state s(x) ∈ S, a g-value g(x), and a parent node p(x).
We also define f(x) = g(x) + h(s(x)) as the f -value of x.
Conceptually, x corresponds to a path from sstart to s(x) with
cost g(x). The path can be constructed by backtracking along
the parent nodes. We assume that the reader is familiar with
the properties of A* when used with consistent h-values, for
example, that the sequence of expanded nodes has monoton-
ically non-decreasing f -values.

NAMOA*: For any state s, NAMOA* (Algorithm 1) main-
tains two sets of g-values, Gcl(s) and Gop(s).1 These sets
store the non-dominated g-values for all the expanded nodes
and for all the generated but not-yet-expanded nodes associ-
ated with state s, respectively. These two sets are used to per-
form dominance checks in order to prune nodes that cannot
be part of the Pareto-optimal set. To check if a given n-tuple v
is dominated by a n-tuple in a given set of n-tuples V, the al-
gorithm iterates through V, which takes linear time in |V|, as
shown in Algorithm 2.

In each iteration, NAMOA* extracts a node x from Open
whose f -value is not dominated by the f -value of any node
in Open. One way to select such a non-dominated node is
to select a node with the lexicographically smallest f -value
(Line 11). Node x is pruned if f(x) is dominated by a g-value
in Gcl(sgoal) (Lines 13-14). Otherwise, NAMOA* adds g(x) to
Gcl(s(x)) (Line 15) and expands x. If state s(x) is the goal
state sgoal, then NAMOA* adds (the corresponding path of) x
to sols (Lines 16-18). Otherwise, it generates a child node x′

for each successor t of state s(x). Node x′ is pruned if its
g-value is dominated by a g-value in Gcl(t) ∪ Gop(t) or if
its f -value is dominated by a g-value in Gcl(sgoal) (Lines 24-
25). If node x′ is not pruned, then NAMOA* removes all nodes
with state t and whose g-values are dominated by g(x′) from
Open and their g-values from Gop(t), and adds node x′ to
Open and its g-value to Gop(s(x

′)) (see Algorithm 3).

NAMOA*dr: Recall that each dominance check performed
by NAMOA* (Lines 13 and 24, Algorithm 1) requires a linear-
time iteration over Gcl(s) and Gop(s) for each state s consid-
ered. This operation is time-consuming and can often domi-
nate the algorithm’s runtime. NAMOA*dr [Pulido et al., 2015]
improves the processes by using a technique called dimen-
sionality reduction to reduce the size of Gcl and thus reduce
the time taken to perform dominance checks subsequently.

1‘cl’ and ‘op’ are shorthand for ‘closed’ and ‘open’, respectively.

NAMOA*dr uses a consistent heuristic and extracts a node
with the lexicographically smallest f -value among all nodes
in Open in each iteration. Thus, when NAMOA*dr extracts or
generates a node x, we always have that g1(x) ≥ max{g1 |
g ∈ Gcl(s(x))} and that f1(x) ≥ max{g1 | g ∈ Gcl(sgoal)}.
Therefore, there is no need to consider the first component
of g- or f in dominance checks. To this end, let the trun-
cated vector of a vector v with length n, denoted as Tr(v),
be the vector consisting of its last n − 1 elements. That is,
Tr(v) = (v2, . . . , vn). For a state s, NAMOA*dr only needs to
maintain the set of non-dominated truncated g-values for all
expanded nodes, namely GTr

cl (s), which is often significantly
smaller than the size of Gcl(s) [Pulido et al., 2015]. As the g-
values of generated nodes are not necessarily monotonically
and lexicographically increasing, to check whether a gener-
ated node x is dominated by some node in Open associated
with state s(x), NAMOA*dr still needs to completely iterate
over Gop(s(x)).

BOA*: BOA* [Hernández et al., 2023] is a bi-objective
(that is, with exactly two objectives) search algorithm which
also builds upon the dimensionality reduction technique of
NAMOA*dr. In the specific setting of bi-objective search, the
truncated g-value is a single number g2 (2 is the index of
the 2nd and last dimension), and a non-dominated truncated
g-value set can be represented by the minimum g2-value of
all g-values. For all expanded nodes associated with some
state s, BOA* stores this minimum value in gmin

2 (s). When a
node x is extracted from Open or generated, BOA* prunes
node x if f(x) ≥ gmin

2 (sgoal) or if g(x) ≥ gmin
2 (s(x)) holds.

BOA* and NAMOA*dr differ in the way dominance checks
are performed. BOA* performs a dominance check for a node
x (both when generating it and when extracting it from Open)
by matching x against gmin

2 (s(x)) (which is equivalent to per-
forming dominance check in Closed). But when x is gener-
ated, BOA* does not check if the node is dominated by some
node in Open. Therefore, the greatest advantage of BOA* is
that all dominance checks of BOA* are done in constant time
(against gmin

2 ). But since no pruning is done with nodes in
Open, there is a risk in BOA* of having a larger Open com-
pared to NAMOA*dr. Nevertheless, Hernández et al. [2023]
showed empirically that BOA* significantly outperforms both
NAMOA* and NAMOA*dr in terms of runtime (due to the much
smaller dominance check overhead) on a wide suite of bench-
marks of road network instances.

Multi-Objective Search Framework and EMOA*: Re-
cently, Ren et al. [2022] proposed a Multi-Objective Search
Framework (MOSF) that generalizes BOA* to more than two
objectives. Similar to BOA*, when a node x is generated, a
particular algorithm in MOSF performs dominance checks
against only Gcl(s(x)) and Gcl(sgoal) while ignoring Open.
The EMOA* [Ren et al., 2022] algorithm is a particular case
of MOSF. EMOA* also utilizes the dimensionality reduction
technique. It extracts nodes in the increasing lexicographic
order and maintains the set of non-dominated truncated g-
values GTr

cl (s) for each state s. Specifically, EMOA* uses an
AVL tree to store GTr

cl (s) for each state s. With three ob-
jectives, the dominance check against GTr

cl (s) takes in loga-
rithmic time in terms of the number of elements in GTr

cl (s),
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Algorithm 4: RemoveDominated
Input : A vector v and a set of vectors V
Output: V updated

1 for each v′ ∈ V do
2 if v ⪯ v′ then
3 Remove v′ from V

4 return

Algorithm 5: LTMOA*
Input : A search problem (S,E, c, sstart, sgoal) and a consistent

heuristic function h
Output: A cost-unique Pareto-optimal solution set

1 sols← ∅
2 for each s ∈ S do
3 GTr

cl (s)← ∅
4 x← new node with s(x) = sstart
5 g(x)← zero in all dimensions
6 p(x)← null
7 f(x)← h(sstart)
8 Initialize Open and add x to it
9 while Open ̸= ∅ do

10 Extract a node x from Open with the lexicographically
smallest f -value

11 if IsDominated(Tr(g(x)),GTr
cl (s(x))) or

IsDominated(Tr(f(x)),GTr
cl (sgoal)) then

12 continue

13 RemoveDominated(Tr(g(x)),GTr
cl (s(x)))

14 Add gT(x) to GTr
cl (s(x))

15 if s(x) = sgoal then
16 Add x to sols
17 continue
18 for each t ∈ Succ(s(x)) do
19 y ← new node with s(y) = t
20 g(y)← g(x) + c(s(x), t)
21 p(y)← x
22 f(y)← g(y) + h(t)

23 if IsDominated(Tr(g(y)),GTr
cl (t)) or

IsDominated(Tr(f(y)),GTr
cl (sgoal)) then

24 continue
25 Add y to Open

26 return sols

denoted as |GTr
cl (s)|. However, with more than three objec-

tives, EMOA*’s dominance checks still takes linear time on
|GTr

cl (s)|. Ren et al. [2022] showed empirically that EMOA*
outperforms NAMOA*dr in terms of runtime on road network
instances with three objectives.

4 LTMOA*
In this section, we describe Linear Time MOA* (LTMOA*),
a new particular case of MOSF that performs dominance
check in linear time using a linked list or an array to store
GTr

cl (s) for each state s. Algorithm 5 shows the pseudo-
code for LTMOA*. LTMOA* maintains GTr

cl (s), a set of non-
dominated truncated g-values for each state s. In contrast to
NAMOA* and NAMOA*dr, LTMOA* does not maintain Gop(s).
When extracting or generating a node x, LTMOA* prunes
x if (i) Tr(f(x)) is weakly dominated by any vectors in
GTr

cl (sgoal); or if (ii) Tr(g(x)) is weakly dominated by any
vector in GTr

cl (s(x)) (Lines 11 and 23). Similar to BOA*, LT-
MOA* does not check if a generated node is dominated by

 
(2, 3, 3)
sstart  

(0, 0, 0)
sgoal

 
(1, 2, 4)
s1

 
(1, 1, 1)
s2

(3, 1, 3) (1, 1, 1)

(1, 1, 1)

(1, 3, 2)

(1, 3, 4)

(1, 1, 1)

Figure 1: An example search instance with three objectives. The vec-
tor inside each state is its h-value.

Iter Open ⟨s(x),g(x), f(x)⟩ Update of GTr
cl (s(x))

1 ⟨sstart, (0, 0, 0), (2, 3, 3)⟩∗ GTr
cl (sstart) = {(0, 0)}

2 ⟨s1, (1, 1, 1), (2, 3, 5)⟩∗ GTr
cl (s1) = {(1, 1)}⟨s2, (1, 3, 2), (2, 4, 3)⟩

3
⟨s2, (1, 3, 2), (2, 4, 3)⟩∗

GTr
cl (s2) = {(3, 2)}⟨s2, (4, 2, 4), (5, 3, 5)⟩

⟨sgoal, (2, 4, 5), (2, 4, 5)⟩

4
⟨sgoal, (2, 4, 3), (2, 4, 3)⟩∗

GTr
cl (sgoal) = {(4, 3)}⟨s2, (4, 2, 4), (5, 3, 5)⟩

⟨sgoal, (2, 4, 5), (2, 4, 5)⟩
5 ⟨s2, (4, 2, 4), (5, 3, 5)⟩

⟨sgoal, (2, 4, 5), (2, 4, 5)⟩∗
6 ⟨s2, (4, 2, 4), (5, 3, 5)⟩∗ GTr

cl (s2) = {(3, 2), (2, 4)}
7 ⟨sgoal, (5, 3, 5), (5, 3, 5)⟩∗ GTr

cl (sgoal) = {(4, 3), (3, 5)}
8 empty

Table 1: Trace of Open and GTr
cl in each iteration of LTMOA* on

solving the example search instance. “∗” marks the node that is ex-
tracted in that iteration.

nodes in Open associated with the same state. Thus, multi-
ple copies of the same state (one dominating the other) may
be simultaneously in Open. Then, after choosing node x for
expansion, LTMOA* removes all (truncated) g-values that are
dominated by Tr(g(x)) from GTr

cl (s(x)) (Line 13) and then
inserts Tr(g(x)) to GTr

cl (s(x)) (Line 14).
In Algorithm 5, we highlight some differences of LTMOA*

compared to NAMOA*dr in blue. When generating a node
x, NAMOA*dr performs more dominance checks than LT-
MOA* as it needs to iterate over Gop(s(x)). More specifi-
cally, assuming that x is not pruned, NAMOA*dr iterates over
Gop(s(x)) twice: It first checks if g(x) is dominated by any
g-value in Gop(s(x)) (Line 24, Algorithm 1), and then it
needs to check if each g-value in Gop(s(x)) should be re-
moved. In contrast, LTMOA* does not perform the dominance
checks with Gop(s(x)) but, instead, performs more domi-
nance checks when it extracts x for expansion.

The main difference between LTMOA* and EMOA* is how
dominance checks are implemented. In EMOA* the domi-
nance checks are implemented with AVL trees. We provide
two other approaches for dominance checks, which use differ-
ent data structures than AVL trees: (1) Linked List: For each
state s, GTr

cl (s) is stored as a linked list. Both IsDominated
and RemoveDominated iterate through the entire linked
list and hence take linear time of |GTr

cl (s)|. (2) Array: For each
state s, GTr

cl (s) is stored as an array. When removing a g-value
from GTr

cl (s), LTMOA* first swap this g-value with the last g-
value in the array and then pop the last g-value from the array,
which takes only constant time.

Figure 1 shows a toy problem instance with three ob-
jectives with Pareto-optimal paths in this problem instance:
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sstart, s2, sgoal (shown by blue arrows) with cost (2, 4, 3) and
sstart, s1, s2, sgoal (shown by red arrows) with cost (5, 3, 5).
Table 1 shows a trace of Open and changes to GTr

cl in each it-
eration of LTMOA*. In Iterations 1-2, LTMOA* expands nodes
⟨sstart, (0, 0, 0), (2, 3, 3)⟩ and ⟨s1, (1, 1, 1), (2, 3, 5)⟩, and then
generates node ⟨sgoal, (2, 4, 5), (2, 4, 5)⟩, which is associated
with sgoal. However, in Iterations 3-4, LTMOA* finds a solu-
tion with cost (2, 4, 3). Hence, node ⟨sgoal, (2, 4, 5), (2, 4, 5)⟩
is extracted and pruned in Iteration 5. In Iteration 3, node
⟨s1, (2, 4, 3), (3, 6, 7)⟩ is also generated when expanding
node ⟨s2, (1, 3, 2), (2, 4, 3)⟩. However, it is not added to
Open since it is pruned (and hence not shown in the table)
as Tr(2, 4, 3) = (4, 3) is dominated by (1, 1) ∈ GTr

cl (s1). In
Iteration 6, the node associated with s1, generated when ex-
panding node ⟨s2, (4, 2, 4), (5, 3, 5)⟩ is also pruned.

If we use NAMOA*dr to solve this problem instance, node
⟨sgoal, (2, 4, 5), (2, 4, 5)⟩ will be removed from Open in It-
eration 3 when node ⟨sgoal, (2, 4, 3), (2, 4, 3)⟩ is inserted to
Open, and the algorithm will terminate in Iteration 7. De-
spite having fewer iterations, NAMOA*dr needs to perform
more dominance checks: In Iteration 2, when generating
node ⟨s2, (4, 2, 4), (5, 3, 5)⟩, NAMOA*dr needs to check if
its g-value (4, 2, 4) and (1, 3, 2), that is, the g-value in
Gop(s2), dominates each other. Meanwhile LTMOA* inserts
node ⟨s2, (4, 2, 4), (5, 2, 5)⟩ into Open without performing
such dominance checks, and it only needs to perform one
additional dominance check between (2, 4) and (3, 2) in It-
eration 6 before expanding the node.

5 A Lazy Multi-Objective Search Framework
We propose an even “lazier” framework in terms of domi-
nance checks, Lazy MOSF, which is a simple extension of
MOSF where dominance checks during node generation is
totally removed. To explain how the framework works, we
describe LazyLTMOA*, a Lazy-MOSF variant of LTMOA*.
While LTMOA* performs dominance checks against truncated
g-values of expanded nodes when a node is generated or ex-
tracted from Open, LazyLTMOA* performs dominance checks
only when a node is extracted from Open (line 11 of Algo-
rithm 5). We omit the pseudo code for LazyLTMOA* since if
can be obtained by removing Lines 23-24 from Algorithm 5.

Consider LazyLTMOA* and the problem instance in Fig-
ure 1. Table 2 shows a trace of Open and changes to
GTr

cl in each iteration of LazyLTMOA*. In Iteration 3, node
⟨s1, (2, 4, 3), (3, 6, 7)⟩ is generated by LazyLTMOA* when
expanding ⟨s2, (1, 3, 2), (2, 4, 3)⟩ and inserted into Open
(whereas LTMOA* prunes ⟨s1, (2, 4, 3), (3, 6, 7)⟩). Later, in
Iteration 6, node ⟨s1, (2, 4, 3), (3, 6, 7)⟩ is extracted from
Open and then pruned. Similarly, in Iteration 7, node
⟨s1, (5, 3, 5), (6, 5, 9)⟩ is also generated and inserted into
Open when expanding ⟨s2, (4, 2, 4), (5, 3, 5)⟩. Although
LazyLTMOA* has more iterations than LTMOA*, it performs
fewer dominance checks.

Table ?? summarizes the properties of different algorithms,
including the number of objectives that they are designed for
(second column); the dominance checks that are done when
a node x is generated and when it is extracted from Open
(third and fourth columns, respectively); whether they ex-

Iter Open ⟨s(x),g(x), f(x)⟩ Update of GTr
cl (s(x))

1 ⟨sstart, (0, 0, 0), (2, 3, 3)⟩∗ GTr
cl (sstart) = {(0, 0)}

2 ⟨s1, (1, 1, 1), (2, 3, 5)⟩∗ GTr
cl (s1) = {(1, 1)}⟨s2, (1, 3, 2), (2, 4, 3)⟩

3
⟨s2, (1, 3, 2), (2, 4, 3)⟩∗

GTr
cl (s2) = {(3, 2)}⟨s2, (4, 2, 4), (5, 3, 5)⟩

⟨sgoal, (2, 4, 5), (2, 4, 5)⟩

4
⟨sgoal, (2, 4, 3), (2, 4, 3)⟩∗

GTr
cl (sgoal) = {(4, 3)}⟨s1, (2, 4, 3), (3, 6, 7)⟩

⟨s2, (4, 2, 4), (5, 3, 5)⟩
⟨sgoal, (2, 4, 5), (2, 4, 5)⟩

5
⟨s1, (2, 4, 3), (3, 6, 7)⟩
⟨s2, (4, 2, 4), (5, 3, 5)⟩
⟨sgoal, (2, 4, 5), (2, 4, 5)⟩ *

6 ⟨s1, (2, 4, 3), (3, 6, 7)⟩ *
⟨s2, (4, 2, 4), (5, 3, 5)⟩

7 ⟨s2, (4, 2, 4), (5, 3, 5)⟩∗ GTr
cl (s2) = {(3, 2), (2, 4)}

8 ⟨sgoal, (5, 3, 5), (5, 3, 5)⟩∗ GTr
cl (sgoal) = {(4, 3), (3, 5)}⟨s1, (5, 3, 5), (6, 5, 9)⟩

9 ⟨s1, (5, 3, 5), (6, 5, 9)⟩∗
10 empty

Table 2: Trace of Open and GTr
cl in each iteration of LazyLTMOA*

on solving the example search instance. “∗” marks the node that is
extracted in that iteration.

ploit dimensionality reduction (fifth column); whether they
avoid dominance checks in Open; and weathesr they avoid
dominance checks when a node is generated (last column).
When comparing LTMOA* or EMOA* to NAMOA*dr, we ob-
serve the following: NAMOA*dr performs dominance checks
in Open but it only iterates over GTr

cl (sgoal) when extract-
ing a node for expansion. LTMOA* and EMOA* avoid dom-
inance checks in Open but it needs to iterate over both
GTr

cl (s(x)) and GTr
cl (sgoal) when extracting a node. Therefore,

LTMOA* and EMOA* performs fewer dominance checks for
x if |GTr

cl (s(x))| < |Gop(s(x))|. LazyLTMOA* only iterates
GTr

cl (sgoal) and GTr
cl (s(x)) when extracting a node from Open

and hence performs the fewest dominance checks.

6 Theoretical Results
We now prove that LTMOA* returns a cost-unique Pareto-
optimal solution set (Theorem 1) using the general proof
strategy for BOA*. The same property can be proved for
LazyLTMOA* (Theorem 2) following the same proof. As the
proofs for some lemmas are straightforward generalizations
of those for BOA*, we also omit them here for brevity. In-
stead, we focus on those with significant differences com-
pared to the ones for BOA* as a result of generalizing from
two to more objectives.
Lemma 1. For each generated (or about to be generated but
pruned) node x with its parent node p, it holds that f1(x) ≥
f1(p) and Tr(f(x)) ⪰ Tr(f(p)).
Lemma 2. The sequences of extracted nodes and of expanded
nodes have monotonically non-decreasing f1-values.
Lemma 3. Two nodes x1 and x2 with the same state s
that are sequentially expanded will satisfy Tr(f(x1)) ̸⪯
Tr(f(x2)).
Proof Sketch: Assume for a proof by contradiction that LT-
MOA* expands node x1 with state s before node x2 with
state s, that it expands no node with state s after node x1

and before node x2, and that Tr(f(x1)) ⪯ Tr(f(x2)). Then,
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Algorithm #Obj. Node Generation Node Extraction DR AGO ADG

BOA* 2 gmin
2 (s(x)), gmin

2 (sgoal) gmin
2 (s(x)), gmin

2 (sgoal) ✓ ✓ ✗
NAMOA* ≥ 2 Gcl(s(x)),Gop(s(x)),Gcl(sgoal) Gcl(sgoal) ✗ ✗ ✗
NAMOA*dr ≥ 2 GTr

cl (s(x)),Gop(s(x)),GTr
cl (sgoal) GTr

cl (sgoal) ✓ ✗ ✗
EMOA* ≥ 2 GTr

cl (s(x)),G
Tr
cl (sgoal) GTr

cl (s(x)),G
Tr
cl (sgoal) ✓ ✓ ✗

LTMOA* ≥ 2 GTr
cl (s(x)),G

Tr
cl (sgoal) GTr

cl (s(x)),G
Tr
cl (sgoal) ✓ ✓ ✗

LazyLTMOA* ≥ 2 GTr
cl (s(x)),G

Tr
cl (sgoal) ✓ ✓ ✓

Table 3: Summary of the dominance checks done by all algorithms and how they are performed. (DR: Dimensionality Reduction, AGO:
Avoid Gop(s(x)), ADG: Avoid Dominance checks in node Generation)

Tr(g(x1)) ⪯ Tr(g(x2)) since hi(x1) = hi(s) = hi(x2)
for all i. After x1 is expanded and before x2 is expanded,
Tr(g(x1)) is added into GTr

cl (s) (Line 14). Since Tr(g(x1)) ⪯
Tr(g(x2)), which satisfies the pruning condition (Line 11),
x2 is not expanded, which contradicts the assumption. □
Corollary 1. Two nodes x1 and x2 with the same state s that
are sequentially expanded will satisfy f(x1) ̸⪯ f(x2).
Proof Sketch: Since the truncated Tr(f(x1)) does not weakly
dominate the truncated Tr(f(x2)) (Lemma 3), the non-
truncated f(x1) cannot weakly dominate f(x2). □
Lemma 4. Two nodes x1 and x2 with the same state s that
are sequentially expanded will satisfy f(x1) ̸⪰ f(x2).
Proof Sketch: Assume by contradiction that LTMOA* ex-
pands node x1 with state s before node x2 with state s, that it
expands no node with state s after node x1 and before node
x2, and that f(x1) ⪰ f(x2). We distinguish two cases:
• Node x2 was in Open when node x1 was extracted and

expanded. Since LTMOA* extracts the node with the lexi-
cographically smallest f -value, we distinguish two cases:
• fi(x1) < fi(x2) for some value i and fj(x1) = fj(x2)

for all j < i. In this case, f(x1) ̸⪰ f(x2), which contra-
dicts the assumption.

• f(x1) = f(x2). After x1 is expanded and before x2 is
expanded, Tr(g(x1)) is added into GTr

cl (s) (Line 14).
Further, since Tr(g(x1)) weakly dominates Tr(g(x2)),
which satisfies the pruning condition (Line 11), node x2

is not expanded, which contradicts the assumption.
• Node x2 is not in Open when node x1 was extracted and

expanded. Therefore, there must exist a node x3 in Open
that is eventually expanded and it is an ancestor of node x2.
Since LTMOA* extracts the node with the lexicographically
smallest f -value, we further distinguish two cases:
• fi(x1) < fi(x3) for some value i and fj(x1) = fj(x3)

for all j < i. In this case, f(x1) ̸⪰ f(x3). Combining this
inequality and f(x2) ⪰ f(x3) (Lemma 1) yields f(x1) ̸⪰
f(x2), which contradicts the assumption.

• f(x1) = f(x3). Combining this equality with f(x2) ⪰
f(x3) (Lemma 1) yields f(x1) ⪯ f(x2). If f1(x1) <
f1(x2), then f(x1) ̸⪰ f(x2), which contradicts the
assumption. Otherwise, if f1(x1) = f1(x2), then
Tr(g(x1)) ⪯ Tr(g(x2)), which satisfies the prun-
ing condition (Line 11) since Tr(g(x1)) is added into
GTr

cl (s) after node x1 is expanded and before node x3 is
expanded (Line 14). Therefore, node x2 is not expanded,
which contradicts the assumption. □

Corollary 2. Expanded nodes with the same state do not
weakly dominate each other.

Lemma 5. If node x1 with state s is weakly dominated by
node x2 with state s, then each node with the goal state in
the subtree of the search tree rooted at node x1 is weakly
dominated by a node with the goal state in the subtree rooted
at node x2.

Lemma 6. When LTMOA* prunes a node x1 with state s (on
Lines 11 or 23) and this prevents it in the future from adding a
node x2 (with the goal state) to the solution set (on Line 16),
then it can still add in the future a node (with the goal state)
that weakly dominates node x2 (on Line 16).

Theorem 1. LTMOA* computes a cost-unique Pareto-optimal
solution set.

Theorem 2. LazyLTMOA* computes a cost-unique Pareto-
optimal solution set.

7 Experimental Results
The objective of our evaluation is twofold. First, we want to
investigate the impact on performance when the dominance
checking is partially and totally removed. Second, we want to
compare the performance of state-of-the-art algorithms.

All algorithms were implemented from scratch in C using
a standard binary heap for Open. The C++ implementation
of EMOA* provided by Ren et al. [2022] is much slower than
our C implementation (up to 20 times slower in average), so
we include the results of the latter. We used a 2.80GHz In-
tel(R) Core(TM) i7-1165G7 CPU Linux laptop with 64GB of
RAM. We use the New York map of the 9th DIMACS Im-
plementation Challenge: Shortest Path2 with the number of
components in the cost function being 3, 4, and 5.3 The orig-
inal map has two components in the cost function for each
edge that represent the travel distance (d) and the travel time
(t). We used the economic cost (m), which combines toll and
fuel consumption according to the road category of New York
(NY) used in [Pulido et al., 2015], as the third cost compo-
nent for each edge. Additionally, we used a random integer
number between 1 and 100 (r) and the number of edges (l)
[Casas et al., 2021] as the fourth and fifth components re-
spectively. Following Hernández et al. [2023], the heuristic h
corresponds to the exact cost for each individual component
of reaching the goal state.

We first compare LTMOA*, LazyLTMOA*, along with two
other variants of LazyLTMOA*, LazyLTMOA*-1 and LazyLT-
MOA*-2 which performs dominance checks against only

2http://users.diag.uniroma1.it/challenge9/download.shtml
3We do not show results for two objectives as BOA* already per-

forms dominance checks in O(1).
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runtime(s) |gen| |exp| |check| |per|
New York City (NY) with 4 Cost Components

(|S| = 264, 346, |E| = 730, 100, avg |sols| = 17, 719)
LTMOA* 113.48 19,107,463 6,247,196 40,724,367,477 174,722,665
LazyLTMOA*-1 71.98 19,107,463 6,247,196 24,374,282,199 193,799,413
LazyLTMOA*-2 147.08 19,107,463 6,247,196 57,986,381,958 406,834,102
LazyLTMOA* 71.24 19,107,463 6,247,196 20,173,843,419 450,753,168

Table 4: Runtime (in secs), number of generated nodes (|gen|), number of expanded nodes (|exp|), number of domination checks (|check|)
and the number of heap percolations (|per|) in average for the evaluated algorithms in 40 random instances.

solved tmean tmax tmin tmedian

NY with 4 Cost Components (avg |sols| = 17, 719)
NAMOA*dr 38/40 710.46(558.38) 3,600.00 0.15 3.11
EMOA* 38/40 560.19 (400.20) 3,600.00 0.15 3.04
LazyEMOA* 38/40 505.68 (342.83) 3,600.00 0.15 3.46
LazyLTMOA*-L 38/40 502.88 (339.87) 3,600.00 0.15 2.66
LazyLTMOA*-A 40/40 71.24 (43.15) 807.37 0.15 1.28

NY with 5 Cost Components (avg |sols| = 36, 887)
LazyEMOA* 21/40 1,790.04 (152.45) 3,600.00 0.18 1,470.35
LazyLTMOA*-L 21/40 1,788.27 (149.08) 3,600.00 0.18 1,478.75
LazyLTMOA*-A 28/40 1,358.21 (11.48) 3,600.00 0.18 98.69

NY with 3 Cost Components (avg |sols| = 34, 857)
LazyEMOA* 86/100 793.32 (263.03) 3,600.00 0.11 55.53
LazyLTMOA*-L 84/100 913.36 (401.62) 3,600.00 0.11 64.60
LazyLTMOA*-A 93/100 517.92 (104.63) 3,600.00 0.11 28.36

Table 5: Random instances (40 for 4 and 5 components, and 100 for 3 components) solved and statistics on runtimes t (in secs). When an
algorithm times out after 3,600s, we use 3,600s in the calculations.

GTr
cl (sgoal) and GTr

cl (s(x)), respectively, when a node x is gen-
erated. All algorithms use an array to implement the GTr

cl set.
Table 4 shows the runtime, the number of generated nodes
(|gen|), the number of expanded nodes (|exp|), the number
of domination checks (|check|), and the number of heap per-
colations in Open (|per|). We use 4 components (l-d-t-m) as
the cost function. We can observe that all algorithms obtain
the same number of nodes generated and nodes expanded.
Also, since the number of domination checks can be in or-
ders of magnitude greater than the number of heap percola-
tions, we can observe that LazyLTMOA* performs the smallest
number of domination checks and thus results in the best run-
time (slightly better than LazyLTMOA*-1) even with the high-
est number of heap percolations. In contrast, LazyLTMOA*-
2 has the worse runtime since it has the highest number of
domination checks. In this version, all the generated nodes
are checked on GTr

cl (sgoal), that can be the biggest GTr
cl set.

Table 5 shows the number of instances solved within a time
limit of 3,600s and the runtime statistics in NY map with 5 (l-
d-t-m-r), 4 (l-d-t-m) and 3 (d-t-m) components. The num-
ber in the bracket of tmean is the mean of runtime among the
instances solved by all the algorithms. The evaluated algo-
rithms are NAMOA*dr and EMOA* (only with 4 cost function),
LazyEMOA*, LazyLTMOA* with the linked list implementa-
tion of GTr

cl (LazyLTMOA*-L) and LazyLTMOA* with the array
implementation of GTr

cl (LazyLTMOA*-A). For 5 and 3 com-
ponents, we only show the results of the fastest algorithms.
We observe that LazyLTMOA*-A solves more instances and
is faster than NAMOA*dr, EMOA*, LazyEMOA*, and LazyLT-
MOA*-L. Considering only the instances that all algorithms
solved, LazyLTMOA*-A is up to ×13.5, ×7.9, and ×2.5 faster
than LazyEMOA* in NY map with 5, 4, and 3 components, re-
spectively. We observe that the performance of LazyLTMOA*-

L is similar to the performance of LazyEMOA* for 3 and 5
components. With 3 components LazyEMOA* is faster than
LazyLTMOA*-L due mainly to logarithmic time complexity of
LazyEMOA* for dominance check. However, LazyLTMOA*-A
is faster than LazyEMOA* due to the following reasons. (1)
using simple arrays instead of linked lists or AVL trees is
more efficient for implementation. (2) LazyEMOA* uses an
AVL tree to keep the GTr

cl set of each state. Each time when a
new element is inserted in the GTr

cl set, the tree is updated by
removing dominated vectors and inserting the new element,
which may trigger several heavy AVL balancing procedures.

8 Conclusions
We presented LTMOA* and LazyLTMOA*, new multi-objective
search algorithms that implement a more efficient dominance
checking than EMOA* using simple array data structures and a
lazier approach that remove dominance checking during node
generation. The results show that LazyLTMOA* outperforms
EMOA* up to an order of magnitude in runtime.

Acknowledgements
This research was supported by the United States-Israel Bina-
tional Science Foundation (BSF) grants number 2019703 and
2021643 and by the Israeli Ministry of Science & Technology
grants number 3-16079 and 3-17385. The research at the Uni-
versity of Southern California was supported by the National
Science Foundation (NSF) under grant number 2121028. The
research at the Chilean universities was supported by the Na-
tional Center for Artificial Intelligence CENIA FB210017,
Basal ANID, and the Centro Ciencia & Vida FB210008, Fi-
nanciamiento Basal ANID.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

7229



References
[Ahmadi et al., 2021] Saman Ahmadi, Guido Tack, Daniel

Harabor, and Philip Kilby. Bi-objective search with bi-
directional A*. In Proceedings of the European Sympo-
sium on Algorithms, volume 204, pages 3:1–3:15, 2021.

[Bachmann et al., 2018] Daniel Bachmann, Fritz Bökler,
Jakob Kopec, Kira Popp, Björn Schwarze, and Frank We-
ichert. Multi-objective optimisation based planning of
power-line grid expansions. ISPRS International Journal
of Geo-Information, 7(7):258, 2018.

[Bronfman et al., 2015] Andrés Bronfman, Vladimir Mari-
anov, Germán Paredes-Belmar, and Armin Lüer-Villagra.
The maximin hazmat routing problem. European Journal
of Operational Research, 241(1):15–27, 2015.

[Casas et al., 2021] Pedro Maristany de las Casas, Luitgard
Kraus, Antonio Sedeño-Noda, and Ralf Borndörfer. Tar-
geted multiobjective dijkstra algorithm. arXiv preprint
arXiv:2110.10978, 2021.

[Fu et al., 2019] Mengyu Fu, Alan Kuntz, Oren Salzman,
and Ron Alterovitz. Toward asymptotically-optimal in-
spection planning via efficient near-optimal graph search.
In Proceedings of Robotics: Science and Systems, 2019.

[Fu et al., 2021] Mengyu Fu, Oren Salzman, and Ron Al-
terovitz. Computationally-efficient roadmap-based inspec-
tion planning via incremental lazy search. In Proceedings
of International Conference on Robotics and Automation,
pages 7449–7456, 2021.

[Hernández et al., 2023] Carlos Hernández, William Yeoh,
Jorge A. Baier, Han Zhang, Luis Suazo, Sven Koenig, and
Oren Salzman. Simple and efficient bi-objective search
algorithms via fast dominance checks. Artificial Intelli-
gence, 314:103807, 2023.

[Li et al., 2015] B. Li, J. Li, K. Tang, and X. Yao. Many-
objective evolutionary algorithms: A survey. ACM Com-
puting Surveys, 48(1):1–35, 2015.

[Mandow and De La Cruz, 2010] Lawrence Mandow and
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