A Coarse-To-Fine Fusion Network for Event-Based Image Deblurring

Huan Li1,2, Hailong Shi1,* and Xingyu Gao1,*

1Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China
{\{lihuan, shihailong, gaoxingyu\}@ime.ac.cn}

Abstract

Event-driven image deblurring is an innovative approach involving the input of events obtained from the event camera alongside blurred frames to facilitate the deblurring process. Unlike conventional cameras, event cameras in event-driven imaging exhibit low-latency characteristics and are immune to motion blur, resulting in significant advancements in image deblurring. In this paper, we propose a pioneering event-based coarse-to-fine image deblurring network named CFFNet. In contrast to existing deblurring methods, our approach incorporates event data, generating multiple coarse frames from a single frame before further refining them into a sharp image. We introduce an Event Image Fusion Block (EIFB) for the coarse fusion of events and images, producing coarse frames at different time points. Additionally, we propose a Bidirectional Frame Fusion Block (BFFB) for the fine fusion of coarse frames. CFFNet effectively harnesses the spatiotemporal information of event data through a comprehensive fusion process from coarse to fine. Experimental results on the GoPro and REBlur datasets demonstrate that our method achieves state-of-the-art performance for image deblurring task.

1 Introduction

Motion blur stands out as a prominent factor influencing image quality and the pursuit of reconstructing sharp images from blurred counterparts has long been a focal point in computer vision. In the early stage of image deblurring, techniques such as regularization constraints and blur kernel estimation were commonly employed to enhance the quality of image reconstruction [Kundur and Hatzinakos, 1996; Fergus et al., 2006; Dai and Wu, 2008; Krishnan et al., 2011; Wulff and Black, 2014]. However, these traditional approaches may prove ineffective in specific scenarios, particularly when dealing with complex blurs or significant levels of image blurring. In recent years, significant advancements have been achieved in image deblurring, thanks to the emergence of deep learning methods, particularly those grounded in convolutional neural networks [Tao et al., 2018; Park et al., 2020; Cho et al., 2021; Chen et al., 2021; Chen et al., 2022b; Li et al., 2023a; Zhang et al., 2023a]. These methods have showcased impressive performance, excelling in handling complex blurs and large-scale datasets. Despite substantial progress compared to traditional methods, these deep learning approaches still encounter challenges in complex real-world scenarios, especially those involving high-speed movements.

As novel bio-inspired sensor, event cameras diverge in their approach to acquiring visual information compared to traditional cameras [Gallego et al., 2020]. Unlike RGB cameras that sample images with a fixed exposure time, event cameras operate on event-driven principles, detecting and outputting information about changing pixels in real-time. The imaging
process of RGB cameras inevitably leads to the loss of some crucial motion information, while the high temporal resolution characteristic of event cameras compensates for potential additional information loss within the exposure time, making them more suitable for high-speed motion scenarios. However, given that event cameras capture asynchronous sparse signals, traditional computer vision methods are no longer suitable for processing such signals. While recent researches have proposed some event-based deblurring algorithm models [Lin et al., 2020; Shang et al., 2021; Cao et al., 2022; Sun et al., 2022; Sun et al., 2023; Yang and Yamac, 2023] and have made great achievement. While they directly fuse events and images, resulting in the loss of a considerable amount of temporal information from event data. To overcome the limitations of previous researches, we introduce a coarse-to-fine deblurring network based on events, named CFFNet. This network takes blurry images and event data as input and outputs sharp images. We introduce a Event Image Fusion Block (EIFB) for the coarse fusion of images with events and a Bidirectional Frame Fusion Block (BFFB) for the fine fusion of coarse frames.

Specifically, the coarse fusion stage utilizes an encoder-decoder structure resembling UNet. This involves feeding blurry images and events into the encoder, extracting features and obtaining multi-scale information through downsampling. Employing cross-attention effectively fuses details from both modalities. The coarse fusion stage further branches into two paths to handle images and events separately. In the image branch, images act as query vectors, events provide key and value vectors, while the roles reverse in the event branch. The upsampled features from the decoder connect with the same-scale encoder output via a Channel Attention Block (CAB) [Zhang et al., 2018]. After passing through a Spatial Attention Module (SAM) [Zamir et al., 2021] and concatenation, the decoder generates multiple coarse frames. Transitioning to fine fusion stage, a stack of Bidirectional Frame Fusion Blocks (BFFB) iteratively facilitate the fusion of multiple frames in forward and backward propagation, enabling effective information integration across multiple frames. Ultimately, multiple UNets are employed to output high-quality sharp images. Rigorous evaluations on the GoPro dataset and the recently introduced REBlur dataset confirm our model’s outstanding state-of-the-art performance.

In summary, the main contributions of this paper include:

- We introduce an event-based coarse-to-fine deblurring network, decomposing the image deblurring task into two stages. In the coarse fusion stage, we fuse blurred frames and event streams to generate multiple coarse frames. In the fine fusion stage, we merge these coarse frames to obtain sharp images.
- We propose a novel Event Image Fusion Block (EIFB) for cross-modal information fusion between events and images. Furthermore, we introduce a Bidirectional Frame Fusion Block (BFFB) to learn information from adjacent frames, enabling multi-frame fusion and comprehensive utilization of spatiotemporal information in event data.
- By demonstrating the effectiveness of our deblurring network on mainstream large-scale datasets, our model achieves state-of-the-art results for image deblurring task on the GoPro and REBlur datasets.

2 Related Work

2.1 Frame-Based Deblurring

Reconstructing sharp images from motion-blurred frames has been a long-standing research focus [Hyun Kim et al., 2017; Pan et al., 2016; Nah et al., 2017; Nimisha et al., 2017; Wan et al., 2020; Park et al., 2020]. Traditional deblurring methods often involve the utilization of blur kernels or regularization techniques, employing techniques such as deconvolution [Krishnan et al., 2011], kernel estimation [Xu and Jia, 2010], etc. However, their effect is not ideal.

Recently, deep learning approaches have been employed to achieve improved deblurring results by training convolutional networks to learn the mapping from blurred to sharp images for image reconstruction. For instance, [Zamir et al., 2021] divides the image reconstruction into three stages and utilizes the Supervised Attention Module (SAM) for supervision and efficient feature propagation. Another approach proposed by [Chen et al., 2021] introduces a deep stacked hierarchical network that focuses on different scale features of blurry images and employs the UNet architecture as an encoder-decoder structure. Additionally, [Chen et al., 2022b] introduces linear gating units to replace non-linear activation functions, maintaining the performance of image denoising while bringing nontrivial gains to image deblurring. Furthermore, [Li et al., 2023a] introduces a group spatiotemporal shift module to obtain an extended effective receptive field. However, frame-based image deblurring methods have limitations in accurately capturing motion information in high-speed scenarios.

2.2 Event-Based Deblurring

[Pan et al., 2019] proposed an Event-based Double Integral (EDI) deblurring model, establishing a mapping relationship from blurred image to sharp images with events. However, this model is susceptible to noise from event cameras and its deblurring performance is limited. Another approach [Zhang and Yu, 2022] introduces a self-supervised learning model that estimates event-based residuals to unify motion deblurring and frame interpolation. [Sun et al., 2022] provides voxelized event frames and blurred images to the network by incorporating cross-attention to merge both modalities and introducing a mask to concentrate on the area where the events occur. Furthermore, [Zhou et al., 2023] utilizes event data to estimate optical flow information and guides image reconstruction through optical flow. While the introduction of optical flow accelerates model convergence through optical flow loss, it is prone to errors in optical flow calculation and increases the complexity of the process. Additionally, [Yang and Yamac, 2023] introduces a deblurring network based on LSTM, allowing a dynamic number of event frames and incorporating deformable convolutions to enhance feature extraction.
Most traditional event-based deblurring methods [Chen et al., 2022a; Yang et al., 2022; Yu et al., 2023; Yang et al., 2023] directly fuse all events and images, losing temporal information in event data, rendering their model performance unsatisfactory. To overcome the limitations of the above models, we design a coarse-to-fine deblurring network from coarse to fine, mapping single image to multiple frames, then fusing them back into sharp image for improved deblurring results.

3 Problem Formulation and Analysis

Event cameras operate without fixed exposure times and respond asynchronously to changes in pixel logarithmic brightness. When a pixel’s log intensity exceeds the contrast threshold \(c \), the pixel generates an output in the form of \((x, y, t, \delta)\), where \(x \) and \(y \) respectively represent the horizontal and vertical coordinates of the pixel on an image. \(t \) records the time of the event and \(\delta \in (-1, +1) \) indicates polarity, signifying the direction of the intensity change, as expressed below:

\[
\delta = \begin{cases}
+1, & \text{if } \log \frac{I(t)}{I(t - \Delta t)} > c \\
-1, & \text{if } \log \frac{I(t)}{I(t - \Delta t)} < c
\end{cases}
\] (1)

The contrast threshold \(c \) is user-defined and may vary depending on different sensors. Here, \(I(t) \) represents the image intensity of the point \((x, y)\) at time \(t \) and \(\Delta t \) signifies the time interval between adjacent events, determined by the rate and magnitude of changes in pixel intensity. Based on Equation (1), we set \(E(t, \hat{t}) = \int_{t}^{\hat{t}} \delta(s) ds \) to represent the event integral from \(t \) to \(\hat{t} \) and can derive the relationship between \(I(t) \) and \(I(\hat{t}) \):

\[
I(\hat{t}) = I(t) \exp(c \cdot E(t, \hat{t}))
\] (2)

[Pan et al., 2019] introduced the Event-based Double Integral (EDI) model to describe the relationship between the blurry image \(B \) and the latent sharp image \(L \). If capturing starts at time \(s \) and continues for an exposure time \(T \), the resulting blurry image \(B \) can be obtained by averaging the integral of the latent sharp image \(L \) over the time period \(T \):

\[
B = \frac{1}{T} \int_{s}^{s+T} L(t) dt
\] (3)

Handling the direct integration of continuous images can be challenging. Therefore, we assume that the blurry image \(B \) is composed of \(N \) images taken over a time period of \(T \):

\[
B = \frac{1}{N} \sum_{s \leq t \leq s + T} L(t)
\] (4)

If we consider a fixed reference time point \(r \) and exposure starting at time \(s \), in conjunction with Equation (2) and Equation (4), we can obtain:

\[
B = \frac{L(r)}{N} \sum_{s \leq t \leq s + T} \exp(c \cdot E(r, t))
\] (5)

This leads to the mapping relationship between the blurry image \(B \) and the sharp image \(L \):

\[
L(r) = \sum_{s \leq t \leq s + T} \frac{B \cdot N}{\exp(c \cdot E(r, t))}
\] (6)

4 Method

In this section, we present an overview of our model’s architecture, as outlined in Section 4.1. Our model is divided into two key phases: coarse fusion and fine fusion. Subsequently, in Section 4.2, we provide a detailed exploration of the coarse fusion stage, focusing on its main module, EIFB. Following that, in Section 4.3, we delve into the specifics of the fine fusion stage and its principal module, BFFB.

4.1 The Overall Architecture of CFFNet

Equation (6) has shown that by accumulating events over time, a mapping from blurred images to sharp images can be established. Based on this relationship, we designed a coarse-to-fine fusion network (CFFNet), which takes events and blurry image as input and outputs sharp images. Given a blurred image \(B \in \mathbb{R}^{H \times W \times 3} \) and a set of events \(E \in \mathbb{R}^{N \times 4} \),...
where \(I \) symbolizes the quantity of event voxels. The mapping relationship can be described as:

\[
\hat{B} = f_2 \left(f_1 \left(E; B \right); f_1 \left(B; E \right) \right),
\]

where \(\hat{B} \in \mathbb{R}^{NH\times W\times 3} \) represents the coarse frames and \(N \) represents its count. \(f_1 \) represents feature extraction and cross-modal fusion, while \(f_2 \) denotes the fusion of features from two branches. The fine fusion stage can be expressed as:

\[
I = f_3 \left(\text{Backward} \left(\text{Forward} \left(\hat{B} \right) \right) \right),
\]

where \(I \in \mathbb{R}^{NH\times W\times 3} \) denotes the deblurred image, \(\text{Forward} \) and \(\text{Backward} \) refer to the processes of forward and backward propagation. \(f_3 \) symbolizes the final image reconstruction.

As illustrated in Figure 2, our model is structured with two stages: (1) Coarse fusion. (2) Fine fusion.

4.2 Coarse Fusion Stage

Events and images represent two distinct data types and effectively integrating their features stands as a crucial step in the deblurring process. Events, characterized by asynchronous computer vision methods obsolete. Directly inputting each event into the model would demand a substantial amount of computational resources. Therefore, we adopted the CTER method from [Sun et al., 2022], which averages the events into six parts, accumulating events from the middle time to various time points as voxel blocks.

In dynamic scenes, triggered events suggest positions that are more likely to be blurred, while positions without events tend to remain sharp. This aligns with the voxel input, where positions with higher events accumulation merit increased attention. Hence, we introduce the Event Image Fusion Block (EIFB), as depicted in Figure 3. The process involves two branches for images and events, taking blurred frames and events as input. The module employs an encoder-decoder structure with UNet, extracting multi-scale features through stacked UNets. Both the decoder and encoder utilize Residual Blocks for feature extraction, consisting of two \(3 \times 3 \) convolutions with LeakyReLU activation functions and a residual connection utilizing a \(1 \times 1 \) convolution. The patch size is set as \(256 \times 256 \) and the encoder performs two downsampling steps using convolution with a kernel size of \(4 \times 4 \) and a stride of \(2 \), obtaining feature maps of sizes \(128 \times 128 \) and \(64 \times 64 \), respectively.

The lower scale features are upsampled by the decoder and merged with the same scale features through a skip connection using a CAB [Zhang et al., 2018]. In the image branch, the image features act as \(Q_{\text{image}} \), while events serve as \(V_{\text{event}} \) and \(K_{\text{event}} \) in the cross-attention module. The event branch in turn, with input event features acting as \(Q_{\text{event}} \). EIFB adopts the UNet structure with three scales and utilizes multi-head attention with the number of heads corresponding to the channel numbers of the feature maps. The decoder outputs feature maps at the same scale as the input image. The outputs of both branches are further concatenated after passing through a SAM [Chen et al., 2021]. Considering the different voxels correspond to event integrals from the middle time to different time points, we can change the number of coarse frames generated. Regarding the impact of the number of coarse frames on our model, we will discuss this in the subsequent experiments. SAM propagates useful features from the current stage to the next while simultaneously calculating the loss by combining it with ground truth and expediting the image reconstruction process.

4.3 Fine Fusion Stage

Event data inherently contains a wealth of temporal information which has often been overlooked in previous researches [Han et al., 2021; Kim et al., 2023; Zhou et al., 2023; Zhang et al., 2023b; Sun et al., 2022; Sun et al., 2023; Yang and Yamac, 2023; Li et al., 2023a], where after merging features from both images and events, directly synthesizing a single image disregards the temporal information contained in the events.

In the coarse fusion stage, where we obtain multiple frames at different times, so we design a Bidirectional Frame Fusion Block (BFFB) to effectively leverage the spatiotemporal information within these frames, as illustrated in Figure 4. This module consists of two sub-modules: the forward pro-
agitation and backward propagation modules. The red dashed lines represent forward propagation, while the blue solid lines represent backward propagation. During forward propagation, the feature maps of \(f_i \) are evenly divided into \(f_i^a \) and \(f_i^b \), with one branch concatenating with \(f_{i+1} \) in the channel dimension to obtain preliminary fused features. Leveraging half of the channels in the feature maps provides effective information exchange between adjacent frames and reducing the model complexity and computational load. The fused features then undergo convolution and stacking with SimpleGates [Chen et al., 2022b], which replace non-linear activation functions through the product of two feature maps, simplifying the model. The module concludes with an efficient channel attention block, capturing global information and fusing spatiotemporal information between preceding and subsequent frames. Through repeated stacking of forward and backward propagation modules, each frame learns ample information from adjacent frames.

5 Experiments

We assess our approach on two image deblurring datasets: the GoPro dataset [Nah et al., 2017] and the recently introduced REBlur dataset [Sun et al., 2022].

GoPro. The GoPro dataset are commonly employed for motion deblurring task which consist of 3214 pairs of blurred and sharp images with a resolution of 1280x720. Blurred images are generated by averaging 7 to 13 consecutive frames, producing variations in blur intensity. As the dataset solely contains images, we employ the event simulator ESIM [Rebecq et al., 2018] to generate the corresponding events. Among these pairs, 2103 are utilized for training, and the remaining 1111 are reserved for testing.

REBlur. The REBlur dataset combines event data with genuine blurred images, featuring 1469 pairs across various motion scenarios. We split the dataset into training (486 pairs) and testing (983 pairs) sets. To enhance the model’s performance, we fine-tune it on the training subset of the REBlur dataset, pretrained with the GoPro dataset and subsequently evaluate its effectiveness on the testing set.

Table 1: Deblurring results on GoPro dataset. “Events” indicates whether event data has been introduced. D²Nets† and HINet† indicate the introduction of additional event data.

<table>
<thead>
<tr>
<th>Model</th>
<th>Events</th>
<th>PSNR†</th>
<th>SSIM†</th>
</tr>
</thead>
<tbody>
<tr>
<td>D²Nets¹ [Shang et al., 2021]</td>
<td>✔</td>
<td>31.60</td>
<td>0.940</td>
</tr>
<tr>
<td>MPRNet [Zamir et al., 2021]</td>
<td>X</td>
<td>32.66</td>
<td>0.959</td>
</tr>
<tr>
<td>HiNet [Chen et al., 2021]</td>
<td>X</td>
<td>32.71</td>
<td>0.959</td>
</tr>
<tr>
<td>Restormer [Zamir et al., 2022]</td>
<td>X</td>
<td>32.92</td>
<td>0.961</td>
</tr>
<tr>
<td>ChaRR [Cui and Knoll, 2023]</td>
<td>X</td>
<td>33.28</td>
<td>0.963</td>
</tr>
<tr>
<td>FSNet [Cui et al., 2023]</td>
<td>X</td>
<td>33.29</td>
<td>0.963</td>
</tr>
<tr>
<td>HiNet¹ [Chen et al., 2021]</td>
<td>✔</td>
<td>33.69</td>
<td>0.961</td>
</tr>
<tr>
<td>NAFNet [Chen et al., 2022b]</td>
<td>X</td>
<td>33.69</td>
<td>0.967</td>
</tr>
<tr>
<td>M3SNet [Gao et al., 2023]</td>
<td>X</td>
<td>33.74</td>
<td>0.967</td>
</tr>
<tr>
<td>MADANET+ [Yang and Yamac, 2022]</td>
<td>✔</td>
<td>33.84</td>
<td>0.964</td>
</tr>
<tr>
<td>GRL [Li et al., 2023b]</td>
<td>X</td>
<td>33.93</td>
<td>0.968</td>
</tr>
<tr>
<td>Vitoria et al. [Vitoria et al., 2022]</td>
<td>✔</td>
<td>34.33</td>
<td>0.944</td>
</tr>
<tr>
<td>NIRE [Zhang et al., 2023b]</td>
<td>✔</td>
<td>35.03</td>
<td>0.973</td>
</tr>
<tr>
<td>EFNet [Sun et al., 2022]</td>
<td>✔</td>
<td>35.46</td>
<td>0.972</td>
</tr>
<tr>
<td>DLEFNet [Yang and Yamac, 2023]</td>
<td>✔</td>
<td>35.61</td>
<td>0.973</td>
</tr>
<tr>
<td>CFFNet (Ours)</td>
<td>✔</td>
<td>36.26</td>
<td>0.976</td>
</tr>
</tbody>
</table>

5.1 Implementation Details

Our model is designed as an end-to-end network, eliminating the need for pre-training. During training, we input cropped images sized at 256 × 256 and event voxels into the network, incorporating horizontal and vertical flipping for both images and event voxels in heat pixels to augment the dataset. Utilizing the Adam optimizer, we implement a cosine annealing strategy, adjusting the learning rate from \(4 \times 10^{-4} \) to \(1 \times 10^{-7} \). Training is conducted on 4 NVIDIA 3090 RTX GPUs for 300k iterations. The fine-tuning process on the REBlur dataset involves 2000 iterations on one A100, initializing the learning rate at \(4 \times 10^{-5} \). All other parameters and configurations remain consistent with the training on the GoPro dataset.

5.2 Evaluation

We evaluate our method on two datasets for image deblurring task and report standard metrics for image restoration, including PSNR and SSIM. To compare the visual effects of different models, we selected several images and compared the results obtained by running them on different pre-trained models.

Figure 4: Bidirectional Frame Fusion Block.
Results on GoPro. We present the deblurring results in Table 1. Due to utilizing more data information, event-based methods exhibit a more pronounced deblurring effect. Among these models, our approach maximizes the utilization of spatiotemporal information from event data, yielding the best evaluation indicators. To further underscore the superiority of our model, we introduce event data into two frame-based methods: HINet and D²Net. While there is an improvement compared to the original models, our approach maintains a significant lead. We showcase visualization examples of our model in Figure 5, demonstrating superior detail restoration in complex scenes.

Results on REBlur. Compared with the GoPro dataset, the scenes in REBlur are simpler. As they are grayscale pictures, models perform well on this dataset. The evaluation metrics for our model and others are presented in Table 2, with visual comparisons shown in Figure 6. Our model outperforms other state-of-the-art networks in both evaluation metrics and visual effects. It is evident that most other models struggle in handling blurred scenes, exhibiting noticeable ghosting phenomena. In contrast, our model demonstrates a commendable restoration effect on edges and textures. The quantitative results reveal that our model achieved the best outcomes in both PSNR and SSIM metrics, benefiting from the enhanced exploration of event data.

5.3 Ablation Study

We examine the contributions of each component in our CFFNet on the GoPro dataset and explored the impact of hyperparameters on both the GoPro and REBlur datasets, leading to the following conclusions:

<table>
<thead>
<tr>
<th>Model</th>
<th>Events</th>
<th>PSNR↑</th>
<th>SSIM↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRN [Tao et al., 2018]</td>
<td>✗</td>
<td>35.10</td>
<td>0.961</td>
</tr>
<tr>
<td>NAFNet [Chen et al., 2022b]</td>
<td>✗</td>
<td>35.48</td>
<td>0.962</td>
</tr>
<tr>
<td>Restormer [Zamir et al., 2022]</td>
<td>✗</td>
<td>35.50</td>
<td>0.959</td>
</tr>
<tr>
<td>HINet [Chen et al., 2021]</td>
<td>✗</td>
<td>35.58</td>
<td>0.965</td>
</tr>
<tr>
<td>EDI [Pan et al., 2019]</td>
<td>✔</td>
<td>36.52</td>
<td>0.964</td>
</tr>
<tr>
<td>SRN† [Tao et al., 2018]</td>
<td>✔</td>
<td>36.68</td>
<td>0.970</td>
</tr>
<tr>
<td>HINet† [Chen et al., 2021]</td>
<td>✔</td>
<td>37.68</td>
<td>0.973</td>
</tr>
<tr>
<td>EFNet [Sun et al., 2022]</td>
<td>✔</td>
<td>38.12</td>
<td>0.975</td>
</tr>
<tr>
<td>REFID [Sun et al., 2023]</td>
<td>✔</td>
<td>38.34</td>
<td>0.975</td>
</tr>
<tr>
<td>DLEFNet [Yang and Yamac, 2023]</td>
<td>✔</td>
<td>38.40</td>
<td>-</td>
</tr>
<tr>
<td>CFFNet (Ours)</td>
<td>✔</td>
<td>38.54</td>
<td>0.977</td>
</tr>
</tbody>
</table>

Table 2: Deblurring results on REBlur dataset. Events indicates whether event data has been introduced. SRN† and HINet† indicate the introduction of additional event data.

EIFB. We compare different fusion methods in the coarse fusion stage, as depicted in Table 3, the columns “Frames” and “Events” respectively signify whether image and event data are incorporated. “Cross-attention” denotes the utilization of regular single-scale attention. The model exhibits subpar performance when relying solely on image frames, whereas the introduction of event data markedly enhances its capabilities. Notably, our EIFB module outperforms ordinary attention, showcasing superior integration of information from events and images.

BFFB. In Table 4, we compare the performance of models in the fine fusion stage using different methods to fuse multi-frame features. We employ Add, Concatenate and our proposed Bidirectional Frame Fusion Block (BFFB) for multi-frame fusion. The results demonstrate that introducing additional event data still leads to significant improve-
Frames number. We investigate the impact of the quantity of generated frames in the coarse fusion stage. Our exploration delved into the influence of varying frame numbers on model performance, ranging from 2 to 6. The results illustrated in Figure 7 demonstrate that the model achieves optimal performance when generating four coarse frames. This is because a smaller number of generated frames fails to effectively utilize the temporal information from event data. However, exceeding four generated frames results in an extensive temporal span that leads to inadequate information fusion.

Table 3: Ablation of fusion methods in the coarse fusion stage

<table>
<thead>
<tr>
<th>Frames</th>
<th>Events</th>
<th>Fusion method</th>
<th>PSNR↑</th>
<th>SSIM↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>✖</td>
<td>n/a</td>
<td>29.06</td>
<td>0.936</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>Cross-attention</td>
<td>33.90</td>
<td>0.966</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>EIFB</td>
<td>35.12</td>
<td>0.970</td>
</tr>
</tbody>
</table>

Table 4: Ablation of fusion methods in the fine fusion stage

<table>
<thead>
<tr>
<th>Frames</th>
<th>Events</th>
<th>Fusion method</th>
<th>PSNR↑</th>
<th>SSIM↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>✖</td>
<td>BFFB</td>
<td>33.45</td>
<td>0.944</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>Add</td>
<td>34.92</td>
<td>0.968</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>Concatenate</td>
<td>34.88</td>
<td>0.967</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>BFFB</td>
<td>36.26</td>
<td>0.976</td>
</tr>
</tbody>
</table>

6 Conclusion

In tackling single-image deblurring task, we introduce a novel event-based Coarse-to-Fine Fusion network (CFFNet), a model grounded in image event fusion principles. The coarse fusion stage employs an Event Image Fusion Block (EIFB), merging image and event information to generate coarse frames. The fine fusion stage incorporates a Bidirectional Frame Fusion Block (BFFB), combining information from coarse frames to effectively learn the mapping relationship from blurry images to sharp images. Evaluation on the GoPro dataset and REBlur dataset demonstrates our method’s superiority over state-of-the-art approaches.

Acknowledgments

This work was supported in part by Science and Technology Innovation (STI) 2030—Major Projects under Grant 2022ZD0208700, and National Natural Science Foundation of China under Grant 62376264.
References

