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Abstract
Current Event Stream Super-Resolution (ESR)
methods overlook the redundant and complemen-
tary information present in positive and negative
events within the event stream, employing a di-
rect mixing approach for super-resolution, which
may lead to detail loss and inefficiency. To ad-
dress these issues, we propose an efficient Re-
cursive Multi-Branch Information Fusion Network
(RMFNET) that separates positive and negative
events for complementary information extraction,
followed by mutual supplementation and refine-
ment. Particularly, we introduce Feature Fusion
Modules (FFM) and Feature Exchange Modules
(FEM). FFM is designed for the fusion of contex-
tual information within neighboring event streams,
leveraging the coupling relationship between pos-
itive and negative events to alleviate the mislead-
ing of noises in the respective branches. FEM effi-
ciently promotes the fusion and exchange of infor-
mation between positive and negative branches, en-
abling superior local information enhancement and
global information complementation. Experimen-
tal results demonstrate that our approach achieves
over 17% and 31% improvement on synthetic and
real datasets, accompanied by a 2.3× accelera-
tion. Furthermore, we evaluate our method on two
downstream event-driven applications, i.e., object
recognition and video reconstruction, achieving re-
markable results that outperform existing methods.
Our code and Supplementary Material are available
at https://github.com/Lqm26/RMFNet.

1 Introduction
Event cameras are biologically inspired asynchronous sen-
sors [Brandli et al., 2014]. Unlike traditional cameras, event
cameras register only the changes in brightness for each pixel
over time. These are known as “events”, which are cate-
gorized as positive or negative, depending on whether the
brightness increases or decreases, respectively. This charac-
teristic significantly reduces the amount of recorded informa-
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Figure 1: Compared to previous ESR methods that directly mix
positive and negative events, our multi-branch approach effectively
extracts and integrates features from positive and negative events,
achieving a more complete and clearer details (see the green box).

tion, resulting in advantages such as high temporal resolution,
low power consumption, and a high dynamic range (HDR)
[Gallego et al., 2020]. However, as the application scenarios
become more complex, the spatial resolution of existing event
cameras is insufficient [Li et al., 2021]. Increasing spatial
resolution at the hardware level presents challenges in imple-
menting asynchronous circuits [Gallego et al., 2020], mak-
ing it difficult to maintain the low power consumption and
high temporal resolution advantages of event cameras [Weng
et al., 2022; Gehrig and Scaramuzza, 2022]. Therefore, some
researchers propose to address this issue at the software level,
e.g. by leveraging advanced algorithms, which is referred to
as Event Stream Super-Resolution (ESR).

Current research on ESR can be mainly divided into two
directions. One approach aims to directly generate high-
resolution event data from low-resolution event streams by
spiking neural networks [Li et al., 2019a; Li et al., 2021] or
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frame-assisted methods [Wang et al., 2020b]. However, these
methods often require significant memory [Li et al., 2019a;
Li et al., 2021] and high-quality images as assistance [Wang
et al., 2020b], which complicates the training process and
hinders achieving large-factor super-resolution. Hence, re-
searchers have proposed stacking event streams into either
event frames [Rebecq et al., 2017] or event count images
[Maqueda et al., 2018; Zhu et al., 2018] and subsequently
applying learning-based methods for ESR [Duan et al., 2021;
Weng et al., 2022]. Within event streams, there exist
spatiotemporally inconsistent positive and negative events
[Gehrig et al., 2019]. These events do not perfectly align on
a 2D plane but contain complementary information. Merging
them into an event frame results in partial cancellation be-
tween positive and negative events, forming a new represen-
tation. As positive and negative events typically do not occur
independently, the event frame helps filter out some naturally
occurring noise in the event stream. Consequently, positive
events, negative events, and event frames each contain differ-
ent information about the event stream. However, previous
methods did not effectively distinguish and fully utilize this
information. They simply mix them and input them into the
ESR model, leading to the loss of fine details in the super-
resolved (SR) event stream (Figure 1(a)).

To address these issues, we propose an efficient Recur-
sive Multi-Branch Information Fusion Network (RMFNET).
As illustrated in Figure 1(b), this network processes positive
events, negative events, and event frames in a multi-branch
fashion. Positive and negative events contain the majority of
information in the event stream, while the event frame pro-
vide the guidance to filter noises. Therefore, we design a
Feature Fusion Module (FFM) to highlight the valuable infor-
mation in positive and negative streams according to the event
frame at the initial stage. Specifically, this module calculates
attention weight maps from features of different branches,
facilitating the fusion of contextual information and aiding
the positive and negative branches in noise removal. Subse-
quently, the positive and negative branches conduct feature
extraction for positive and negative events, respectively, em-
ploying a Feature Exchange Module (FEM) for the adaptive
fusion and exchange. Through capturing complementary in-
formation and long-range dependencies between positive and
negative events, FEM improves the integration and exchange
of information across different branches.

The main contributions of our work are as follows:
• We introduce an efficient Recursive Multi-Branch In-

formation Fusion Network capable of effectively merg-
ing positive events, negative events, and event frames,
thereby obtaining high-quality SR event images.

• We design Feature Fusion Modules and Feature Ex-
change Modules, which enhance the positive and neg-
ative event streams while effectively fusing and comple-
menting information across different branches.

• We explored the impact of existing data augmentation
methods on ESR tasks and proposed an effective data
augmentation strategy to enhance the model’s robustness
and performance.

• Our method achieves over 17% and 31% improvement

on synthetic and real datasets, accompanied by a 2.3×
acceleration. In downstream event-based recognition
and reconstruction tasks, our method effectively en-
hances performance, further validating the effectiveness
of our approach.

2 Related Work
Event Stream Super-resolution. Due to the unique spatio-
temporal characteristics of event streams, event stream super-
resolution (ESR) tasks are often more challenging. Initially,
Li et al. [Li et al., 2019a] introduced the Event Count Map
(ECM) as a method to describe event spatial distribution.
They established a spatiotemporal filter to generate a time-
rate function and employed a non-homogeneous Poisson dis-
tribution to model events on each pixel. However, this ap-
proach encounters inaccuracies in estimating spatiotemporal
distributions when performing high-factor super-resolution.
To address this issue, Wang et al. [Wang et al., 2020b] pro-
posed a novel optimization framework called GEF, which
utilizes motion correlation probabilities to filter event noise.
The optimization maximizes the structural correspondence
between low-resolution events and high-resolution image sig-
nals, facilitating event stream super-resolution in conjunc-
tion with image frames. Despite performing well in certain
scenarios, the GEF method exhibits performance degrada-
tion when image frame quality deteriorates. Building upon
this, Li et al. [Li et al., 2021] proposed a spatio-temporal
constraint learning method based on the spiking neural net-
work (SNN) characteristics to simultaneously learn tempo-
ral and spatial features in event streams. On the other hand,
Duan et al. [Duan et al., 2021] transformed event streams
into a 2D event frames format and designed a 3D U-Net-
based network for ESR. While both methods demonstrated
excellent performance in small-scale super-resolution tasks,
they faced challenges of excessive memory requirements and
training difficulties in large-factor super-resolution. To effec-
tively address the challenges of large-factor super-resolution,
Weng et al. [Weng et al., 2022] introduced an event-based
super-resolution method based on Recurrent Neural Net-
works. They initially transformed event streams into coarse-
grained high-resolution event streams using coordinate relo-
cation, followed by super-resolution through recurrent net-
works. This approach not only handles high-factor super-
resolution effectively but also mitigates training challenges
posed by excessive memory requirements.

However, these methods did not account for the spatiotem-
poral inconsistencies and complementarities between posi-
tive and negative events in the event stream. Directly mixing
them may lead to the loss of details. Therefore, we propose
RMFNET, employing a multi-branch approach to mutually
fuse and complement positive and negative events, which ef-
fectively enhances the performance of ESR.

3 Method
In this section, we first introduced the data representation
methods for event cameras in Section 3.1. Subsequently, we
presented the proposed Recursive Multi-Branch Information
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Figure 2: Architecture of our proposed Recursive Multi-Branch Information Fusion Network (RMFNET). Initially, the event frame is fused
into positive and negative branches along with the previous output Ot−1 and state ht−1 using the Feature Fusion Module (bottom left).
Subsequently, each branch independently extracts features through Residual Blocks, and a Feature Exchange Module (bottom) facilitates
the exchange of information between the branches. Finally, the features from the positive and negative branches are concatenated, and high-
resolution event count images Ot are obtained through Pixel Shuffle operation.

Fusion Network in Section 3.2. Finally, we described the data
augmentation methods for ESR in Section 3.3.

3.1 Event Data Representation
A set of event streams can be represented as E = {ek}Nk=1,
where N is the number of events, each event ek ∈ E can be
denoted by a tuple (xi, yi, ti, pi), representing spatial coordi-
nates, timestamp and polarity respectively. Subsequently, we
partition {ek}Nk=1 into positive events {ek}

Np

k=1 and negative
events {ek}Nn

k=1 based on their polarity pi = ±1. Specifi-
cally, we stack {ek}

Np

k=1 and {ek}Nn

k=1 into event count im-
ages [Maqueda et al., 2018; Zhu et al., 2018] according to
the following equations:

h (x, y) =
∑
ek∈E

δ (x− xi, y − yi) (1)

where δ represents the Kronecker delta. Thus, we can build
up two event count images from {ek}

Np

k=1 and {ek}Nn

k=1: pos-
itive pt ∈ RH×W , and negative nt ∈ RH×W . And the event
frame [Rebecq et al., 2017] is obtained by stacking all events
(including positive and negative events) using equation (1),
resulting in ft ∈ RH×W .

3.2 Multi-Branch Fusion Networks
The framework of our proposed RMFNET is depicted in
Figure 2. The main inputs of this network include positive
events, negative events, and event frames. Additionally, fol-
lowing a recursive approach [Schuster and Paliwal, 1997], we
introduce the previous output Ot−1 and state ht−1 into the
input, aiding in better capturing features from adjacent event

streams and achieving contextual fusion of event stream in-
formation. Given that positive and negative events contain the
majority of information in the event stream, we process them
separately through dedicated positive and negative branches.
The event frame, serving as a coupled representation of posi-
tive and negative events, assists in filtering out noise (as pos-
itive and negative events do not occur independently). Thus,
in the initial stage of RMFNET, we fuse ft with Ot−1 and
ht−1 as event-enhanced information FEnh ∈ RC×H×W ,
which is passed to the positive and negative branches through
the Feature Fusion Module (FFM). The positive and nega-
tive branches utilize Residual Block [He et al., 2016] as the
backbone for feature extraction from the fused positive and
negative events, respectively. Subsequently, a Feature Ex-
change Module (FEM) is employed to facilitate the fusion
and exchange of information between the positive and nega-
tive branches. Finally, the features from positive and nega-
tive events are concatenated, outputting the hidden state ht,
and the SR event count images Ot are obtained through pixel
shuffle [Shi et al., 2016].

Feature Fusion Module
As depicted in the bottom left corner of Figure 2, the FFM
is tasked with transmitting event-enhanced information FEnh

to the positive and negative branches without compromis-
ing their distinctive features. Denoting the features extracted
by convolutional layers for positive and negative events as
F p
t ∈ RC×H×W and Fn

t ∈ RC×H×W , respectively. Ini-
tially, we concatenate F p

t with FEnh, followed by a prelim-
inary fusion through a Basic Block, resulting in F fuse

t . The
event-enhanced information encompasses details from adja-
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cent event streams and coupling information between positive
and negative events, effectively guiding the positive branch
in detail recovery. To integrate these features seamlessly,
we utilize the fused feature F fuse

t to compute two attention
weights. The first is local attention weight:

Aloc
t = BN

Ä
C1×1

Ä
R
Ä
BN
Ä
C1×1

Ä
F fuse
t

äääää
(2)

where BN denotes batch normalization, C1×1 represents a
1 × 1 convolution operation, and R represents the ReLU ac-
tivation function.

The second is global attention weight Aglo
t ∈ RC×1×1,

which is computed channel-wise. Specifically, we incorpo-
rate global average pooling to process F fuse

t along the spatial
dimensions:

Aglo
t = fatt

Ä
GAP

Ä
F fuse
t

ää
(3)

where fatt represents the function given in equation (2), and
GAP stands for global average pooling.

Finally, we combine the global and local attention, apply it
to F fuse

t , and add it to the previous features of positive events
F p
t , thereby integrating the event-enhanced information into

the positive branch:

F out
t = F p

t + F fuse
t ⊗

Ä
σ
Ä
Aglo

t ⊕Aloc
t

ää
(4)

where ⊗ represents element-wise product, σ denotes the sig-
moid activation function, and ⊕ signifies broadcasting addi-
tion. Our network is entirely symmetric with respect to posi-
tive and negative branches, so the negative branch follows the
same process.

Feature Exchange Module
Considering the complementary and redundant information
present in positive and negative events, directly integrating
feature information from these branches may have adverse
effects. To address this, we introduce a Feature Exchange
Module (depicted below Figure 2), which utilizes attention
mechanisms to automatically select and enhance crucial fea-
tures, facilitating efficient information exchange between the
two branches.

Firstly, to reduce the redundancy in individual branch fea-
tures and emphasize important features, we apply spatial at-
tention separately to both branches:

F̃t = Convbasic
(
F in
t

)
(5)

F̃P
t = Conv

Ä
F̃t

ä
⊗ F̃t + Conv

Ä
F̃t

ä
(6)

where F in
t represents the input features from the positive and

negative branches, Convbasic denotes the Basic Block, and
Conv represents the convolutional operation. The Conv(F̃t)
in Eq.(6) respectively serves as the weight and bias, adjusting
the weights of branch features. F̃P

t is the output of the pos-
itive branch, and F̃N

t is obtained similarly from the negative
branch.

Subsequently, inspired by self-attention mechanisms
[Vaswani et al., 2017; Wang et al., 2018], we design two
symmetrical Attention Blocks to capture complementary in-
formation from the positive and negative branches. Taking

the positive branch as an example, we use C1×1 to obtain
V ∈ RC×(HW ) for the positive branch, and Q ∈ RC1×(HW )

and K ∈ RC1×(HW ) for the negative branch. Here, C rep-
resents the number of channels, and C1 is set to 1/8 of C
for enhanced computational efficiency. Therefore, the output
of the positive branch, fused with features from the negative
branch, can be represented as:

FP
fuse = V ⊗

(
σ
(
QT ⊗K

))
(7)

where QT represents the transpose of Q. Through the two
symmetrical attention modules, we can achieve a comple-
mentary fusion of features from the positive and negative
branches, effectively enhancing the performance of ESR.

Training Objectives
We partition the event stream into multiple sequences of
length T for training our method, following the approach of
Weng et al [Weng et al., 2022]. We set T = 9 and use Mean
Squared Error (MSE) to calculate the loss:

L =
T∑

t=1

MSE
Ä
OSR

t , ECIHR
t

ä
(8)

where OSR
t represents the event count images of the final SR

event stream, ECIHR
t represents the ground truth event count

images, and MSE is the mean square error function.

3.3 Data Augmentation for ESR
Previous research in the field of image or video super-
resolution has shown that methods involving operations or
augmentations in the pixel space [Zhang et al., 2017; Yun et
al., 2019] can effectively enhance task performance [Yoo et
al., 2020], as they preserve the spatial relationships within
the images. In the realm of ESR, there is currently a
lack of systematic investigation into Event Stream Super-
Resolution Data Augmentation (ESRDA). To address this
gap, we adapt and refine data augmentation methods from
some event stream studies [Gu et al., 2021; Barchid et al.,
2023] and RGB image domains, exploring the impact of data
augmentation on the ESR task. We experiment with the fol-
lowing methods:

• Polarity flipping.

• RandomFlip [Simonyan and Zisserman, 2015].

• Drop by time [Gu et al., 2021].

• Random drop [Gu et al., 2021].

• Drop by area [Gu et al., 2021].

• Random drop or add noise.

• Static Translation.

• RandomResizedCrop [He et al., 2016].

Regarding the details and parameters for data augmentation
operations, please refer to the Supplementary Material.
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Figure 3: Qualitative analysis comparison on synthetic and real datasets. The upper and lower figures represent 4× SR results on the NFS-syn
and EventNFS datasets, respectively. It is evident that our RMFNET excels in recovering finer details of the event streams on both datasets
(see the green box), resulting in sharper edges. Positive events are in blue, negative events in red. Zoom in for the best view.

4 Experiments
4.1 Datasets and Training Settings
Obtaining event data is challenging, and the availability of
event datasets containing LR-HR pairs at multiple scales is
limited. To address this scarcity, similar to many event-based
tasks [Weng et al., 2022; Rebecq et al., 2019; Wang et al.,
2020a], we employed synthetic simulation datasets to enrich
our training data. EventNFS [Duan et al., 2021] is the first
dataset to include LR-HR pairs captured through a designed
display-camera system, capturing rapidly displayed images
on a monitor. However, due to device resolution limitations,
the minimum resolution is 55×31, and there are only 4× data
pairs at the maximum. Moreover, the data at the smallest res-
olution suffers severe degradation due to its low resolution.
To overcome these issues, we utilized an event simulator [Lin
et al., 2022] to transform the NFS dataset [Kiani Galoogahi et
al., 2017] and RGB-DAVIS dataset [Wang et al., 2020b] into
event data, resulting in NFS-syn and RGB-syn datasets. We
selected these datasets because of their high temporal resolu-
tion, which can better simulate real-world event streams. For
further details, please refer to the Supplementary Material.

For a fair comparison, we maintained training settings con-
sistent with [Weng et al., 2022]. We used MSE as the evalu-
ation metric for our models. All experiments were conducted

on a Tesla V100 GPU.

4.2 Comparison with State-of-the-Art Models
In this work, we primarily compared our proposed RMFNET
with two previous learning-based approaches, EventZoom
[Duan et al., 2021] and RecEvSR [Weng et al., 2022].
Other ESR methods [Li et al., 2021; Wang et al., 2020b;
Li et al., 2019a] relying on real frames as assistance or prone
to failure in complex scenes, pose challenges for fair com-
parisons. EventZoom, being the first learning-based event
stream super-resolution method, faces challenges in train-
ing for large-scale SR due to its 3D-Unet architecture, mak-
ing it difficult and computationally expensive. To address
this, following previous practices [Weng et al., 2022], we
ran EventZoom-2× multiple times to obtain results for larger
SR factors. Additionally, we include classic image super-
resolution methods such as bicubic and SRFBN [Li et al.,
2019b], as well as a transformer-based video super-resolution
method, RSTT [Geng et al., 2022], for comparison. We ran-
domly split the real dataset EventNFS for training and testing.
To evaluate the model’s generalization, we select a subset of
NFS-syn data for 2(4, 8)× SR training and then validate on
both the NFS-syn and RGB-syn datasets.

Qualitative Analysis Results. As depicted in Figure 3, we
present the 4× SR results of various methods on both syn-
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Methods
NFS-syn RGB-syn EventNFS-real Param (M) Inference time (ms)

2× 4× 8× 2× 4× 2× 4× 2× 4× 8× 2× 4× 8×

bicubic 0.616 0.531 0.545 0.1197 0.1429 0.760 0.899 - - - - - -
SRFBN 0.411 0.394 0.394 0.1051 0.1010 0.415 0.545 2.1 3.6 7.9 37.3 54.8 65.4
RSTT 0.389 0.366 0.365 0.0954 0.0909 0.310 0.399 3.8 4.1 4.3 61.4 61.1 73.0

EventZoom 0.806 1.049 1.239 0.4462 1.2232 0.778 1.248 11.5 11.5 11.5 17.4 70.1 396.6
RecEvSR 0.430 0.368 0.332 0.5013 0.3360 0.376 0.449 1.8 1.8 1.8 13.2 18.9 19.2

Ours 0.316 0.300 0.305 0.0899 0.0865 0.250 0.316 3.0 3.1 3.6 7.0 7.5 7.8

Table 1: Quantitative analysis comparison on real and synthetic datasets. Mean Squared Error (MSE) is used as the evaluation metric. Model
Parameters (Param) and Inference time are calculated on the NFS-syn dataset. Bold and underline indicate the best and second-best results.

thetic and real data (for more results, please refer to the Sup-
plementary Material). It can be observed that traditional im-
age super-resolution methods such as bicubic and SRFBN [Li
et al., 2019b] struggle to achieve satisfactory visual results in
ESR tasks, exhibiting blurry edges and significant detail loss.
This may be attributed to the gap between event stream and
RGB images. EventZoom [Duan et al., 2021], on the other
hand, exhibits numerous detail losses, likely due to error ac-
cumulation from multiple runs of EventZoom-2×. In com-
parison, RSTT [Geng et al., 2022] and RecEvSR [Weng et al.,
2022] produce event images of higher quality, yet they still
fall short in detail restoration and supplementation. In con-
trast, our proposed RMFNET can better extract detailed in-
formation from positive and negative event streams and com-
plement each other, resulting in more comprehensive details
and clearer edge information.

Quantitative Analysis Results. As shown in Table 1,
compared to the previously SOTA ESR method RecEvSR,
RMFNET achieves an average MSE improvement of 17.7%
and 31.6% on NFS-syn and EventNFS, respectively. On
RGB-syn, RecEvSR exhibits fragile generalization, while
our RMFNET maintains good generalization with an aver-
age MSE improvement of 78%. Additionally, the average
inference speed is improved by 2.3×. Compared to the video
super-resolution method RSTT, RMFNET achieves an aver-
age MSE improvement of 17.8% and 20% on NFS-syn and
EventNFS, respectively. On RGB-syn, while RSTT main-
tains good generalization, our RMFNET still outperforms it
with a 5.3% improvement. Furthermore, our inference speed
is improved by 8.7×. These results demonstrate the effi-
ciency and robustness of our proposed RMFNET.

4.3 Analysis of ESRDA Methods
As shown in Table 2, we compared the impact of different
DA methods on our RMFNET for the 4× ESR task. To better
highlight the influence of data augmentation methods on the
generalization of our model, we only conducted training on
NFS-syn and performed testing on NFS-syn, RGB-syn, and
EventNFS. It can be observed that Polarity flipping, Random-
Flip, and Drop by time all contribute to performance gains in
the ESR task. However, Static translation leads to training
instability, while RandomResizedCrop and Drop by area re-
sult in a decline in the performance and generalization of our
RMFNET. This suggests that altering the relative spatial rela-

Method NFS-syn RGB-syn EventNFS

RMFNET (w/o DA) 0.304 0.0874 0.795

Polarity flipping 0.304 0.0865 ↓ 0.793 ↓
RandomFlip 0.302 ↓ 0.0868 ↓ 0.793 ↓
Drop by time 0.304 0.0873 ↓ 0.790 ↓
Random drop 0.306 ↑ 0.0880 ↑ 0.785 ↓
Drop by area 0.306 ↑ 0.0881 ↑ 0.783 ↓
Random drop or add noise 0.303 ↓ 0.0871 ↓ 0.786 ↓
Static Translation - - -
RandomResizedCrop 0.330 ↑ 0.0921 ↑ 0.799 ↑

Selected DA’s (random) 0.300 ↓ 0.0865 ↓ 0.771 ↓

Table 2: Comparison of different data augmentation methods in ESR
task. Training is conducted on the NFS-syn dataset, and 4× SR
testing is performed on NFS-syn, RGB-syn, and EventNFS datasets.

tionships between events may adversely affect the ESR task.
This could be attributed to the sparse and unidimensional na-
ture of event streams, lacking important features such as color
and intensity. Therefore, disrupting the relative spatial rela-
tionships among event streams significantly impacts the over-
all structure, introducing additional noise and consequently
leading to a decline in model performance.

Random drop only discards a portion of events in the LR
event stream, introducing potential biases in model fitting. To
address this, we propose Random drop or add noise, where
events are not only dropped with a certain probability but
noise is also added simultaneously, mitigating this issue and
enhancing model robustness. Lastly, inspired by RandAug-
ment [Cubuk et al., 2020], we combine Polarity flipping,
RandomFlip, Drop by time, and Random drop or add noise
into a data augmentation ensemble, from which one augmen-
tation is randomly selected (Selected DA). Experimental re-
sults demonstrate that our DA strategy effectively enhances
the performance and generalization of our model in the ESR
task. For more related experiments, please refer to the Sup-
plementary Material.

4.4 Ablation Study
To validate the effectiveness of different components in our
proposed RMFNET, we conducted experiments with four
different variants and compared the 4× SR results on the
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Model Multi-Branch FFM FEM NFS-syn EventNFS

model#A ✘ ✘ ✘ 0.329 0.347
model#B ✔ ✘ ✘ 0.317 0.331
model#C ✔ ✘ ✔ 0.309 0.322
model#D ✔ ✔ ✘ 0.313 0.326
model#E ✔ ✔ ✔ 0.300 0.316

Table 3: Ablation results for different components of our RMFNET.

NFS-syn and EventNFS datasets.
As shown in Table 3, we compared RMFNET with sev-

eral variants with different settings: 1) model#A: using a
single-branch model, concatenating event images and state ht

at the initial stage, and then inputting them into the model. 2)
model#B: discarding FFM and FEM modules, using lateral
connections [Feichtenhofer et al., 2019; Christoph and Pinz,
2016] between branches as an alternative. 3) model#C: dis-
carding the FFM module, using lateral connections between
branches as an alternative. 4) model#D: discarding the FEM
module, using lateral connections between positive and neg-
ative branches as an alternative.

According to the results in Table 3, the multi-branch model
significantly outperforms the single-branch model, as it effec-
tively decouples different parts of the event stream, allowing
for fine-grained learning of each part’s features. Additionally,
the FFM and FEM designed in our model efficiently fuse and
exchange features from different branches, promoting infor-
mation complementarity between positive and negative event
streams, outperforming methods that directly mix features
from different branches. For more details about model hy-
perparameter ablation experiments, please refer to the Sup-
plementary Material.

4.5 Event-based Applications
Video Reconstruction. Video reconstruction is a crucial
task within event-based applications [Rebecq et al., 2019;
Stoffregen et al., 2020; Weng et al., 2021; Liang et al., 2023;
Yang et al., 2023]. Firstly, we conducted 2(4, 8)× SR on
NFS-syn using bicubic, SRFBN [Li et al., 2019b], RSTT
[Geng et al., 2022], EventZoom [Duan et al., 2021], Re-
cEvSR [Weng et al., 2022], and our RMFNET. Subsequently,
we adopt E2VID [Rebecq et al., 2019] as the benchmark al-
gorithm for event-based video reconstruction and utilize the
structural similarity (SSIM) [Wang et al., 2004] and the per-
ceptual similarity (LPIPS) [Zhang et al., 2018] as evalua-
tion metrics for reconstruction quality. Table 4 presents the
quantitative results for event-based video reconstruction, in-
dicating that our method surpasses others in both SSIM and
LPIPS metrics, and exhibits more visually satisfying details
(see Supplementary Material). This further underscores our
method’s capability to better restore details in the LR event
stream.

Object Recognition. We also perform a comparison of
all models and methods in the event-based object recognition
task. In this context, following the methodology of Weng
et al. [Weng et al., 2021], we employ the NCars dataset
[Sironi et al., 2018] for experimentation and leverage the
classifier proposed by Gehrig et al. [Gehrig et al., 2019]

Video Reconstruction

Methods
2× 4× 8×

SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓ SSIM↑ LPIPS ↓

bicubic 0.568 0.395 0.609 0.522 0.598 0.545
SRFBN 0.608 0.389 0.618 0.455 0.612 0.489
RSTT 0.627 0.359 0.639 0.424 0.622 0.472
EventZoom 0.542 0.429 0.575 0.488 0.574 0.542
RecEvSR 0.611 0.371 0.637 0.426 0.630 0.466
RMFNET 0.648 0.339 0.667 0.409 0.653 0.450

Methods
Object Recognition

ACC ↑ AUC ↑ ACC ↑ AUC ↑ ACC ↑ AUC ↑

bicubic 56.67 57.43 56.01 56.89 49.95 50.77
SRFBN 61.12 61.94 60.89 61.03 50.02 50.86
RSTT 63.51 63.96 63.02 64.29 52.97 54.07
EventZoom 54.68 56.03 49.56 50.45 47.96 48.74
RecEvSR 62.91 63.47 62.37 63.07 53.57 54.48
RMFNET 68.75 69.56 69.52 69.80 58.16 59.05

GT 85.16 84.99 93.44 93.52 94.96 94.81

Table 4: Quantitative comparison for event-based video reconstruc-
tion and object recognition. Video reconstruction is conducted on
the NFS-syn dataset, while object recognition is performed on the
NCars dataset [Sironi et al., 2018]. AUC and ACC represent accu-
racy and area under the curve, respectively. GT denotes the result
obtained by directly using downsampled event streams for recogni-
tion. Bold and underline indicate the best and second-best results.

for object recognition. Specifically, we first performed 8×
downsampling on the NCars dataset through coordinate relo-
cation. Subsequently, we employ different models to conduct
2(4, 8)× super-resolution on the event stream and employ the
object recognition method for identification. Table 4 illus-
trates the results of object recognition comparison. We eval-
uate using accuracy (ACC) and area under the curve (AUC).
GT signifies the utilization of results directly obtained from
downsampled raw event streams. It can be observed that
our method outperforms other approaches consistently across
2(4, 8)× super-resolution scales. In comparison with previ-
ous methods, our approach achieves an average improvement
of over 9% in terms of ACC and AUC. These results demon-
strate the superior detail restoration capability of our method.

5 Conclusion
In this paper, we introduced an efficient Recursive Multi-
Branch Information Fusion Network (RMFNET) for ESR
tasks. RMFNET leverages a carefully designed multi-branch
network architecture, taking decoupled positive and negative
events as well as coupled event frames as input to achieve
super resolution of event streams. Additionally, we intro-
duced attention-based Feature Fusion Module and Feature
Exchange Module, which effectively integrate contextual in-
formation from neighboring event streams and facilitate the
exchange of complementary information between positive
and negative events. Furthermore, we explored the impact
of data augmentation methods on ESR tasks and proposed
an effective data augmentation strategy to enhance model ro-
bustness and performance. Results on both real and synthetic
datasets demonstrated that our approach outperforms previ-
ous ESR methods across various metrics.
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