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Abstract

Few-Shot Class Incremental Learning (FSCIL)
aims to continually learn new classes with few
training samples without forgetting already learned
old classes. Existing FSCIL methods generally fix
the backbone network in incremental sessions to
achieve a balance between suppressing forgetting
old classes and learning new classes. However, the
fixed backbone network causes insufficient learn-
ing of new classes from a few samples. Benefiting
from the powerful visual and textual understand-
ing ability of Vision-Language (VL) pre-training
models, we propose a Fine-grained Feature Mining
Prompt Learning (FineFMPL) approach to adapt
the VL model to FSCIL, which comprehensively
learns and memorizes fine-grained discriminative
information of emerging classes. Concretely, the
visual probe prompt is firstly proposed to guide
the image encoder of VL model to extract global-
level coarse-grained features and object-level fine-
grained features, and visual prototypes are pre-
served based on image patch significance, which
contains the discriminative characteristics exclu-
sive to the class. Secondly, the textual context
prompt is constructed by cross-modal mapping of
visual prototypes, feeding into the text encoder
of VL model to memorize the class information
as textual prototypes. Finally, integrating visual
and textual prototypes based on fine-grained fea-
ture mining into the model improves the recogni-
tion performance of all classes in FSCIL. Extensive
experiments on three benchmark datasets demon-
strate that our FineFMPL achieves new state-of-
the-art. The code is available at https://github.com/
PKU-ICST-MIPL/FineFMPL_1ICAI2024.

1 Introduction

Recently, deep networks have achieved remarkable perfor-
mance in numerous computer vision tasks owing to massive
data and computational resources. In practice, their perfor-
mance is severely limited when dealing with a continual data
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Figure 1: Illustrations of (a) Few-Shot Class Incremental Learning
(FSCIL) and (b) the proposed FineFMPL in learning and memo-
rizing fine-grained discriminative information of classes for FSCIL.
VLM is short for the Vision-Language Model.

stream from unseen new classes [Ji et al., 2023]. To han-
dle this problem, Class Incremental Learning (CIL) is in-
vestigated to continually learn new classes with abundant la-
beled data while alleviating the catastrophic forgetting of old
classes. However, the strict requirement of sufficient train-
ing samples of new classes is impractical in many scenarios
when annotated data are hard to obtain [Tao et al., 2020].
Therefore, the Few-Shot Class Incremental Learning (FSCIL)
in Figure 1, i.e., the model is trained on abundant labeled
samples in the base session and learns new classes from few
labeled samples in incremental sessions without seeing old
classes, has attracted more and more attention recently [Song
et al., 2023]. FSCIL encompasses the catastrophic forget-
ting problem of inaccessible old class data and the overfitting
problem caused by scarce new class samples.

A popular FSCIL paradigm is to well-train the backbone
network in the base session which is frozen for fine-tuning
the classifiers to learn new classes via knowledge distilla-
tion [Dong et al., 2021; Cheraghian er al., 2021; Zhao et
al., 2023], attempting to achieve a balance between suppress-
ing forgetting old classes and learning new classes. Though
promising progress has been achieved, the above methods are
still struggling due to the limited learning ability of the back-
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bone network on new data. As the feature extractor, the back-
bone network is trained on abundant data in base sessions and
frozen in incremental sessions, which causes a lower learning
ability for new classes compared with the base classes [Tao et
al., 2020; Zhang et al., 2021]. In addition, the classifiers are
fine-tuned by very few training samples from the entire im-
ages, which generally lack attention to the discriminant parts
of distinguishing different classes.

Recently, the large-scale Vision-Language (VL) pre-
training models, such as the well-known CLIP [Radford et
al., 2021], have shown powerful feature extraction ability,
which can be adapted to various vision tasks by prompt learn-
ing [Zhou et al., 2022d; Sun et al., 2023b]. Inspired by
the above observations and analyses, we propose the Fine-
grained Feature Mining Prompt Learning (FineFMPL) of VL
model to adapt it to the FSCIL task, which learns and mem-
orizes fine-grained discriminative information of emerging
classes to achieve promising performance, as shown in Fig-
ure 1. Concretely, a visual probe prompt is proposed to in-
duce the image encoder of VL model to scale and gather
discriminative image patch information from visual objects.
Then, visual prototypes of classes are constructed based on
the image patch significance analyses and weighted features
aggregation to memorize the class from the visual side. Next,
the textual context prompt is proposed conditioned on cross-
modal mapping of visual prototypes, which contains implicit
object attribute information. It is then input into the text en-
coder of VL model to generate textual prototypes to depict
and memorize the class information from the textual side. Fi-
nally, classes’ visual and textual prototypes are comprehen-
sively utilized for the few-shot class incremental learning. To
sum up, the main contributions can be summarized as fol-
lows:

e We propose a Fine-grained Feature Mining Prompt
Learning (FineFMPL) method to guide the vision-
language model to learn and memorize discriminative
information of classes as visual and textual prototypes
for few-shot class incremental learning.

The visual probe prompt is proposed to scale and
gather object-level information, and visual prototypes
of emerging classes are preserved. Based on the cross-
modal mapping of visual prototypes that contain implicit
object attribute information, the textual context prompt
is constructed to depict and memorize classes as textual
prototypes.

Extensive experiments are conducted on three widely
used FSCIL benchmark datasets to demonstrate that our
proposed FineFMPL approach surpasses existing state-
of-the-art FSCIL methods significantly.

2 Related Work

In this section, we briefly review related works about class in-
cremental learning, few-shot class incremental learning, and
prompt learning.

2.1 Class Incremental Learning

In the Class Incremental Learning (CIL) task, the critical
challenge is to learn new classes without forgetting the old
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knowledge. Existing CIL works can be roughly classified
into three kinds to address this problem. The first kind of CIL
works regularize the model’s predictions [Hinton et al., 2015;
Li and Hoiem, 2017; Liu et al., 2023b] between the old and
current models, where knowledge distillation is commonly
used. The second kind of CIL works [Castro et al., 2018;
Hou er al., 2019] select a few representative samples of
old classes, which are utilized for rehearsal in learning new
classes. The third kind of CIL works [Abati et al., 2020;
Han er al., 2023] attempt to expand the network for learn-
ing new classes. Some prompt learning-based CIL methods
[Wang et al., 2022; Smith et al., 2023] recently have been
proposed to achieve promising performance. However, it is
noted that all the above CIL methods need abundant training
samples of both the old and new classes, whose performance
drops sharply when there are only few training samples of
new classes in realistic scenarios. Therefore, it spurred the
research of few-shot class incremental learning.

2.2 Few-shot Class Incremental Learning

Few-Shot Class Incremental Learning (FSCIL) continually
recognizes new classes of a few training samples, which face
both the catastrophic forgetting problem in CIL and the over-
fitting problem in few-shot learning [An et al., 2023]. FS-
CIL was first proposed in [Tao et al., 2020], which utilized a
neural gas network to preserve topologies of classes. In the
following works, CEC [Zhang er al., 2021] proposed to uti-
lize an independent classifier for each class, where the graph
model conducted the information interaction between classi-
fiers. F2M [Shi et al., 2021] proposed finding flat minima
to alleviate the catastrophic forgetting problem. Recently,
SAVC [Song et al., 2023] proposed introducing semantic
knowledge by imaging virtual classes to help divide the clas-
sification space during training. CABD [Zhao et al., 2023]
proposed the class-aware bilateral distillation to transfer the
knowledge from base classes to new classes for alleviating the
forgetting and overfitting problem. However, existing FSCIL
works generally fix the model’s parameter in incremental ses-
sions, which attempt to balance the stability for base classes
and plasticity for new classes. Due to the data volume dis-
parity, they are prone to base classes of abundant data, which
limits the model’s ability to recognize new classes.

2.3 Prompt Learning

Prompt learning is proposed to adapt the large-scale pre-
trained models to downstream tasks with limited data, which
was first proposed in natural language processing. For ex-
ample, general knowledge is extracted from GPT [Radford et
al., 2019] and BERT [Devlin et al., 2018] for various down-
stream language tasks with prompt designs, such as utilizing
learnable vectors as prompts [Li and Liang, 2021]. Recently,
prompt learning has been introduced into the computer vi-
sion area, which attempts to adapt the Vision-Language (VL)
pre-training model to downstream vision tasks, such as image
classification. As the pioneering work, Zhou et al. [Zhou et
al., 2022d] proposed CoOp to introduce learnable vectors into
the text prompt as the context, which obtained more adaptive
classification weights with the text encoder of CLIP. As an
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Figure 2: The framework of our FineFMPL model.

extension work of CoOp, Zhou et al. [Zhou et al., 2022c] fur-
ther proposed an input-conditional text prompt with a map-
ping neural network, which injected the visual information
into the text prompt. Besides, some adapter methods have
also been researched for adapting the VL. model. Zhang et
al. [Zhang et al., 2022] proposed Tip-Adapter-F to utilize the
few-sample training set to construct the cache model, which
was fine-tuned to adapt VL models to image classification.

In summary, VL models own powerful feature extraction
and generalization ability. However, the above methods can-
not achieve satisfactory results in FSCIL because of the catas-
trophic forgetting problem of old classes and the adaptation
problem to new classes with only a few samples. Inspired
by the importance of discriminative features in classification
[He et al., 2022; Sun et al., 2022; Sun et al., 2023al, we pro-
pose a fine-grained feature mining prompt learning method to
induce the VL model to sufficiently learn and memorize dis-
criminative information of objects as visual and textual pro-
totypes, which benefits the continual learning of new classes
with limited data while not forgetting old classes in FSCIL.

3 Approach

The overview of our FineFMPL model is shown in Figure
2. There are two branches to extract coarse-grained global
features and fine-grained object features where the proposed
visual probe prompting is utilized to scale and gather discrim-
inative information. Global-level and object-level visual pro-
totypes are constructed based on the patch significance cal-
culation for memorizing the class’s visual knowledge. Tex-
tual context prompt is built by cross-modal mapping of the
visual prototypes that contain implicit object attribute infor-
mation, which generates textual prototypes to depict classes
from the textual side for utilizing the cross-modal knowledge
in VL models. Finally, the image classification is conducted
in a two-pathway recognition way, i.e., visual-visual match-
ing calculation and visual-textual matching calculation.
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3.1 Visual Probe Prompt

Discriminative information learning is essential for learning
differences among different classes, which plays an important
role in image classification. Thus, we propose introducing a
Visual Probe Prompt (VPP) into the image encoder of the VL
model, which induces the model to scale and gather signif-
icant image patch information of visual objects for feature
extraction, as shown in Figure 2.

Concretely, the visual probe prompt (VPP) is inserted into
the input sequence of the image encoder of the VL model.
Then, two branches are constructed to capture global infor-
mation and visual object information, respectively. The orig-
inal branch of the image encoder is utilized for extracting the
global-level feature in the class token (abbreviated as CLS
in Figure 2), denoted as f'(glo). A new branch for scal-
ing and gathering discriminative image patch information is
constructed with the proposed VPP prompt. Specifically, we
denote the output of the L — 1 layer of the image encoder
as z,1 = [CLS* '  F'l(x}),..,FL-1(VPP)).
Through the learnable VPP token, we scale the image patch
token features adaptively as follows:

2% = FL" 1 (VPP) Oz 1, (1)
21 = zp—1 + MLP(21%Y), 2)
where © demotes the element-wise multiplication.
Then, z®y is input into the last transformer layer,

which conducts the information interaction to obtain
[f'(CLS), ..., f (x.),....f (VPP)]. Then, the f (VPP)
is utilized as a probe to gather discriminative information
from image patch tokens based on the probe attention as the

complement of ' (CLS):

of () xt (VPP)

Wi = SN o )t (VPP 3)
N

f'(obj) = £ (CLS) + Y w; x f (), 4)
=1
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Figure 3: Illustrations of visual prototypes construction.

where N denotes the number of image patches. Thus, the pro-
posed visual probe prompt aggregates the information from
significant image patches adaptively to obtain the discrimina-

tive object-level feature £’ (obj).

3.2 Visual Prototypes Construction

In FSCIL, there are only a few training samples when learn-
ing new classes in incremental sessions. It needs to memorize
discriminative information of new classes to distinguish them
from old classes. Thus, we extract global-level and object-
level visual prototypes from the training samples, as shown
in Figure 3. The visual object in the image generally contains
distinct image patch information crucial to the final classi-
fication. Thus, the patch significance calculation is utilized
to induce the model to extract and memorize discriminative
visual object information.

The image is first split into image patches as the input of
the image encoder of the VL model. Concretely, the im-
age X € RHXWX3 with height H and width W is split
with sliding stride S. Thus, the number of image patches is
N = I%I X I%I . The image patch is then projected by linear
mapping F(-) and combined with the class token CLS. Next,
the position embeddings are added to introduce the position
information. The input image patch sequence is denoted as
zo = [CLS,F(x}),F(x2),..., F(x\)]. It is noted that the
CLS token represents the whole image for interacting with
all the image patches in the transformer layers, which is uti-
lized for the final classification. Specifically, a multi-head
self-attention (MSA) module and a feed-forward neural net-
work (FFN) in the transformer layer propagate information
among image patches and the CLS token. We denote the in-
put of ki transformer layer as zy_1, and its output can be
obtained as follows:

z,, = LN(MSA(zy_1) + zic_1) , (5)

zi = LN(FFN(zy ) + z,,) , (6)

where LN(-) denotes the layer normalization. The above cal-
culation in the transformer layer enhances the global repre-
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Figure 4: Cross-modal mapping of visual prototypes, which is then
added to the learnable text prompt, i.e., textual context prompt.

sentation ability of CLS token to cover comprehensive con-
text information, which is then saved as the global-level vi-
sual prototype CJ-G of the j;, class by the averaging operation
on all the training samples of the j;j, class.

In the self-attention calculation of the transformer, the
higher the impact of the image patch on the CLS token,
the higher its significance on the final classification, which
can reveal the visual object in the image. Assume H self-
attention heads exist in the l;, transformer layer. We utilize
the Q and K to denote the query vectors and key vectors of
the image patches and CLS token. d denotes the dimension
of the above vectors. The self-attention weights are calculated
as follows:

QK™

(d/H)

where Al € RINFUX(N+D) (p = 1,2 ... H) depicts the
mutual significance of image patches and CLS token. There
are L transformer layers in total. We adopt the recursive ma-
trix multiplication to calculate the total attention for hyj, at-
tention head, following [He et al., 2022].

Al = softmax(

) )

L
Ax =[] AL (8)
=1

The attention weight between the CLS token and other image
patch tokens is extracted from A}, and denoted as AMS!S €
RN, Taking all the H attention heads into account, and
then the final significance of each image patch token (Figure
3) can be calculated as follows:

H
AM = > AM;". 9)
h=1
For extracting the object-level visual features, we adopt the
following weighted sum way:

N
f(obj) = >  AM' x 7z} . (10)

i=1

Then, we can get the object-level prototype CJ-O for the jyp
class by utilizing the averaging calculation on all the training
samples of the j, class.

In summary, based on the image patch significance anal-
ysis, we get the global-level prototype CjG to memorize the
comprehensive context information of classes. The object-
level prototype CJQ is obtained to save the discriminative in-
formation in visual objects of classes.
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3.3 Textual Context Prompt

The textual feature of class information extracted by the
VL model can benefit the recognition of images by the text
prompt design [Zhou et al., 2022d]. Intuitively, the more
comprehensive context information the prompt covers, the
more detailed class information that the textual feature de-
scribes. Thus, we propose textual context prompts condi-
tioned on cross-modal mapping of visual prototypes, which
contains implicit object attribute information, such as bird
wing texture, based on the image patch significance analyses,
as shown in Figure 2 and Figure 4.

Concretely, We can get the global-level visual prototype
C{ and object-level visual prototype C{ of the jq, class in
Section 3.2. To comprehensively use the visual features, we
first learn the mutual feature by concatenating the features
and mapping as follows:

t; = MLP([C{*, CP]), (11)

where MLP conducts the cross-modal mapping. t; is ex-
tracted from the two kinds of visual prototypes, which con-
tain different context information. CJ.G contains the global
context, including the situation, and C? contains the object
attribute information, including the object’s color and texture.
For obtaining stronger context information, the attention-
based feature enhancement is conducted as follows:

ag = sigmoid(t; ©® CJG) ,
t?zag®C?+tj,
ap = sigmoid(t; © CJQ) ,
t?:a()@c;)—‘rtj,

12)

where © demotes the element-wise multiplication. tjG and

tjo are added to learnable prompt tokens to form textual con-
text prompts, which are input into the text encoder of the
VL model to get the global-level textual prototype TjG and
object-level textual prototype TJQ to memorize the informa-
tion of classes from the textual side. It benefits the model’s
final classification performance by utilizing the cross-modal
alignment knowledge in VL models.

3.4 Inference

As shown in Figure 2, we construct two pathways for the
model’s recognition based on the dual-modality prompting.
The first pathway utilizes the visual information of the train-
ing samples memorized by visual prototypes, and the second
pathway utilizes the cross-modal knowledge contained in the
textual prototypes.

In the first pathway, we utilize global-level visual proto-
type C§* and object-level visual prototype C{> for cosine
similarity matching calculation with corresponding extracted
features of f'(glo) and f' (obj). A simple MLP network is
added before the similarity calculation to narrow the gap be-
tween the pre-trained data of the VL model and downstream
data. Finally, we get the prediction logit for the global level
p! and object level pP and the total prediction logit for the
first pathway is calculated:

p1 = apf + p} (13)
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Dataset cbese  Ci"¢ #Inc  N-way-K-shot Image Size
CUB-200-2011 100 100 10 10-way-5-shot  224x224
CIFAR100 60 40 8 5-way-5-shot 32x32
minilmageNet 60 40 8 5-way-5-shot 84x84

Table 1: Dataset setup in the FSCIL task.

where « is a tunable hyper-parameter. We obtain the predic-
tion logit for the second pathway by calculating the cross-
modal similarity directly, which utilizes global-level textual
prototype TJ.G and object-level textual prototype TJQ for

matching calculation with f'(glo) and f’(obj). The predic-
tion logit are denoted as pL and pS, respectively. The total
prediction logit for the second pathway is p2 = apS + p5.
Thus, we can get the final prediction logit p of the image:

p = Ap1 + P2, (14)

where ( is a tunable hyper-parameter. Our FineFMPL ap-
proach mines and memorizes discriminative information of
classes as visual prototypes and textual prototypes, which
learns the classes sufficiently and alleviates the forgetting to
benefit FSCIL.

4 Experiments

We conduct extensive comparison experiments and ablation
studies on three standard few-shot class incremental learn-
ing (FSCIL) benchmark datasets, i.e., CUB-200-2011 [Wah
et al., 2011], CIFAR 100 [Krizhevsky et al., 2009], and mini-
ImageNet [Russakovsky et al., 2015], which shows the effec-
tiveness of our proposed FineFMPL approach.

4.1 Dataset and Metric

For fair comparisons with state-of-the-art (SOTA) FSCIL
methods, the same benchmark datasets and FSCIL setting
[Tao ez al., 2020] are adopted, as shown in Table 1.
CUB-200-2011. It is a fine-grained image classification
dataset comprising 11,788 images from 200 bird classes.
Subtle differences among different bird classes make this
dataset very challenging. In FSCIL, 100 classes are selected
as base classes, and the remaining classes are split into 10 ses-
sions, where each session learns 10 classes with 5 examples
for each class (10-way-5-shot).
CIFAR100. This is composed of 60,000 images from 100
classes. In the few-shot continual learning process, 60 classes
are selected as the base class set, and the remaining 40 classes
are incremental classes. There are 8 continual sessions, learn-
ing 5 new classes with 5 examples each class in each session,
i.e., the 5-way-5-shot setting.
minilmageNet. It covers 60,000 images from 100 classes. 60
classes are set as base classes, and the remaining 40 classes
are divided into 8 sessions, which learns 5 new classes with 5
examples each class, also in a 5-way-5-shot manner.

The classification accuracy is adopted as the evaluation
metric, which is calculated after each session.

4.2 TImplementation Details

Our FineFMPL approach adopts the widely-used public VL
model, i.e., CLIP [Radford et al., 2021], as the backbone,
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o e Accuracy (%) in each session

Methods Publications 0 T 5 5 = 3 9 10 Avg
F2M [Shi et al., 20211 NeurIPS 2021 | 81.1 | 782 | 75.6 | 729 | 709 | 68.2 | 67.0 | 653 | 63.4 | 61.8 | 60.3 | 69.5
CEC [Zhang et al., 2021] CVPR 2021 759 | 719 | 68.5 | 63.5 | 624 | 583 | 57.7 | 55.8 | 54.8 | 53.5 | 52.3 | 61.3
FACT [Zhou et al., 2022al CVPR 2022 759 | 73.2 | 70.8 | 66.1 | 65.6 | 62.2 | 61.7 | 59.8 | 584 | 579 | 56.9 | 644
MCNet [Ji et al., 2023] TIP 2023 77.6 | 740 | 70.5 | 65.8 | 66.2 | 63.8 | 62.1 | 61.8 | 60.4 | 60.1 | 59.1 | 65.6
DSN [Yang er al., 2023] TPAMI 2023 | 76.1 | 72.2 | 69.6 | 66.7 | 644 | 62.1 | 60.2 | 58.9 | 57.0 | 55.1 | 54.2 | 63.3
LIMIT [Zhou et al., 2022b] TPAMI 2023 | 75.9 | 73.6 | 720 | 68.1 | 674 | 63.6 | 624 | 61.4 | 59.9 | 58.7 | 574 | 65.5
LDC [Liu et al., 2023al TPAMI 2023 | 77.9 | 76.9 | 746 | 70.1 | 68.9 | 67.2 | 648 | 64.2 | 63.0 | 624 | 61.6 | 68.3
GKEAL [Zhuang et al., 2023] CVPR 2023 789 | 756 | 723 | 68.6 | 67.2 | 643 | 63.0 | 61.9 | 60.2 | 59.2 | 58.7 | 66.4
CABD [Zhao et al., 2023] CVPR 2023 79.1 | 754 | 72.8 | 69.1 | 67.5 | 65.1 | 64.0 | 63.5 | 61.9 | 61.5 | 609 | 67.3
SAVC [Song er al., 2023] CVPR 2023 819 | 779 | 75.0 | 70.2 | 70.0 | 67.0 | 66.2 | 65.3 | 63.8 | 63.2 | 62.5 | 69.4
TEEN [Wang et al., 2023] NeurIPS 2023 | 77.3 | 76.1 | 72.8 | 682 | 67.8 | 64.4 | 63.3 | 62.3 | 61.2 | 60.3 | 59.3 | 66.6
CLIP* [Radford et al., 2021] ICML 2021 649 | 629 | 61.6 | 57.9 | 58.1 | 58.2 | 56.9 | 55.7 | 543 | 544 | 55.1 | 58.2
Coop*[Zhou et al., 2022d] 1ICV 2022 839 | 79.7 | 77.5 | 725 | 704 | 69.2 | 67.6 | 66.1 | 63.9 | 63.5 | 634 | 70.7
10S [Yoon et al., 2023] arXiv 2023 813 | 774 | 758 | 733 | 72.6 | 704 | 68.7 | 67.3 | 659 | 644 | 63.8 | 71.0
Our FineFMPL method This paper 86.7 | 84.2 | 83.2 | 79.8 | 80.0 | 79.0 | 78.1 | 77.5 | 76.2 | 76.1 | 76.4 | 79.7

Table 2: Comparison with SOTA methods on the CUB-200-2011 dataset for FSCIL. * denotes the reproduced results with the officially
released codes. Bold value indicates the optimal classification accuracy and the underlined value indicates the suboptimal accuracy.

———————— FineFMPL CLIP*[ICML21] CABD[CVPR23] MCNet[TIP23] CEC[CVPR21]
10S[arXiv23] TEEN[NeurlPS23] GKEAL[CVPR23] FACT[CVPR22] F2M[NeurlPS21]
CoOp*[1ICV22] SAVC[CVPR23] LIMIT[TPAMI23]
86.7 89.9 96.0 95.6
90 94.1 93.6 93.5
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Figure 5: The classification accuracy trends of our FineEFMPL method and other SOTA compared methods on the CUB-200-2011, CIFAR100,

and minilmageNet datasets for FSCIL.

where the ViT-B_16 is selected as the image encoder, and
the transformer network is utilized as the text encoder. The
original weights of CLIP are frozen during the whole training
stage. We follow the mainstream experimental setting in [Tao
et al., 2020] for a fair comparison. In the training process, we
set 50 training epochs for CUB-200-2011 in the base session
and 10 epochs for each incremental session. For the CIFAR
100 and minilmageNet datasets, we set 30 training epochs in
the base session and 10 epochs in each incremental session.
ais set to 0.5, 2, 0.5, and S is set to 1.5, 1, and 0.5 for the
three datasets, respectively. The batch size is set as 256. The
learning rate is initialized as le-3 in the base session and le-4
in each incremental session, which all adopt the cosine an-
nealing schedule. AdamW [Kingma and Ba, 2014] is utilized
as the model optimizer. All the experiments are conducted on
one NVIDIA A40 GPU with Pytorch.

4.3 Comparison with State-Of-The-Art Methods
We conduct extensive comparison experiments with state-of-
the-art (SOTA) methods on three standard FSCIL benchmark
datasets. The comparison results are shown in Table 2 and
Figure 5. We can observe that:
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* On the challenging CUB-200-2011 dataset, which has
subtle differences among different classes, our proposed
FineFMPL approach outperforms the compared meth-
ods by significant margins in each session, as shown
in Table 2. Compared with existing SOTA FSCIL
methods using pure vision backbone networks such as
ResNet [He et al., 2016], our FineFMPL surpasses the
typical F2M, SAVC, CABD, and TEEN by 10.2%,
10.3%, 12.4%, and 13.1% on the average classifica-
tion accuracy of all sessions, respectively. Besides, our
FineFMPL approach can keep the performance better in
the incremental sessions compared with other SOTA FS-
CIL methods. SAVE proposed to imagine virtual classes
to introduce semantic knowledge for enhancing the sep-
aration of different classes. By contrast, we propose
to transfer the general knowledge of the VL model and
mine the discriminative information of classes with the
fine-grained dual-modality prompts design. Thus, our
FineFMPL has a stronger generalization ability to learn
new classes with limited data, which alleviates the over-
fitting problem in FSCIL to a large extent. Compared
with CABD, which utilizes the class-aware bilateral dis-
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Visual Probe Prompt Textual Context Prompt
Use global-level | Use object-level | Use global-level | Use object-level | CUB(%) | CIFAR100(%) | minilmageNet(%)
visual prototype | visual prototype | textual prototype | textual prototype

X X X X 58.2 69.1 87.8

v X v X 79.0 83.1 92.8

X v X v 66.0 82.3 90.9

v v X X 71.9 79.8 914

v v v v 79.7 84.2 934

Table 3: Ablation studies about each component of our FineFMPL method on the three FSCIL datasets. The values in the table denote the

average classification accuracy over all sessions.

N NN
NG

Accuracy(%)
N

Accuracy(%)

75.8 69.2
0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0
a

Figure 6: Hyper-parameter experiments about a and 3 on the CUB-
200-2011 dataset.

tillation from base classes, our FineFMPL model di-
rectly memorizes discriminative information of classes
as the visual and textual prototypes, which helps allevi-
ate the catastrophic forgetting problem of old classes.

* We compare our FineFMPL method with the prompting-
based methods, such as CoOp and the recent FSCIL
method I0S, which all utilize CLIP as the backbone.
Our FineFMPL model achieves 9.0% and 8.7% aver-
age performance gains, respectively. Compared with the
textual prompt pool construction of IOS in different ses-
sions, our FineFMPL method utilizes both the visual
prompt and textual prompt for inducing the VL model
to gather significant image patch information and depict
class information, which enhances the model’s learning
ability of classes in FSCIL.

* Figure 5 shows the classification accuracy trend on
the CUB-200-2011, CIFARI100, and minilmageNet
datasets. Our FineFMPL approach can achieve consis-
tent performance gains, bringing 8.7%, 6.7 %, and 1.2 %
average improvements over the sub-optimal method.
Our FineFMPL approach declines more slowly in incre-
mental stages. We attribute it to discriminative informa-
tion memorizing from both the visual and textual sides.

4.4 Ablation Experiments

Experimental results of ablation studies on the three FSCIL
datasets are shown in Table 3. We can observe that:

e Compared with CLIP (our baseline), i.e., the first row,
our FineFMPL brings significant average accuracy gains
of 21.5%, 15.1%, and 5.6% on the CUB-200-2011, CI-
FAR 100, and minilmageNet datasets, respectively. We
attribute the gains to our FineFMPL’s inducing CLIP
to learn and memorize the discriminative information
of classes to alleviate old classes’ forgetting and new
classes’ learning simultaneously.

1305

e Compared with the baseline, our visual probe prompt
brings 19.7%, 10.7%, and 3.6% performance gains when
using both the global-level and object-level prototypes
(as shown in row 4). The proposed visual probe prompt
scales and gathers discriminative visual features, which
help learn the classes sufficiently to improve the FSCIL
performance.

e Compared with only utilizing the fine-grained visual
prompt, the recognition accuracy further improves by
1.8%, 4.4%, and 2.0% through introducing the textual
context prompt, as shown in the last two rows of the
table. The memorization of classes in the textual side
brings an important complement to visual information
kept in visual prototypes, which benefits alleviating the
forgetting problem in FSCIL.

4.5 Hyper-parameter Experiments

Hyper-parameter experiments about « in Eq. 13 and 3 in
Eq. 14 are conducted on the CUB-200-2011 dataset under
the FSCIL setting. The experimental results are presented in
Figure 6. The best performance is obtained when « is set as
0.5. The trend of the curve indicates the importance of the
object branch, which captures crucial discriminative traits for
assisting classification. Our proposed FineFMPL approach
can perform best when 3 is set as 1.5. It verifies the effective-
ness of discriminative visual information memorized by the
global-level and object-level visual prototypes, which allevi-
ates the forgetting problem when learning new classes.

5 Conclusion

In this paper, we propose Fine-grained Feature Mining
Prompt Learning (FineFMPL) of the Vision-Language (VL)
pre-training model for Few-Shot Class Incremental Learning
(FSCIL), which learns and memorizes discriminative infor-
mation of classes as visual and textual prototypes. We pro-
pose the visual probe prompt for inducing the image encoder
of the VL model to extract significant image patch informa-
tion of visual objects, and the visual prototypes of classes are
preserved to save visual knowledge of classes. The textual
context prompt is then constructed and conditioned on the
cross-modal mapping of visual prototypes that contain ob-
ject attribute information implicitly, which help depict the
class information as textual prototypes. Sufficient discrimi-
native information learning and memorizing benefits the un-
derstanding of new classes with few training samples while
not forgetting old classes, which achieves promising perfor-
mance in FSCIL.
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