Fusion from a Distributional Perspective: A Unified Symbiotic Diffusion Framework for Any Multisource Remote Sensing Data Classification

Teng Yang1, Song Xiao1,2,∗, Wenqian Dong1, Jiahui Qu1 and Yueguang Yang1
1The State Key Laboratory of Integrated Service Network, Xidian University
2Beijing Electronic Science and Technology Institute
yangteng@stu.xidian.edu.cn, xiaosong@mail.xidian.edu.cn, wqdong@xidian.edu.cn, jhqu@xidian.edu.cn, yueguangyang001@gmail.com

Abstract

The joint classification of multisource remote sensing data is a prominent research field. However, most of the existing works are tailored for two specific data sources, which fail to effectively address the diverse combinations of data sources in practical applications. The importance of designing a unified network with applicability has been disregarded. In this paper, we propose a unified and self-supervised Symbiotic Diffusion framework (named SymDiffuser), which achieves the joint classification of any pair of different remote sensing data sources in a single model. The SymDiffuser captures the inter-modal relationship through establishing reciprocal conditional distributions across diverse sources step by step. The fusion process of multisource data is consistently represented within the framework from a data distribution perspective. Subsequently, features under the current conditional distribution at each time step is integrated during the downstream phase to accomplish the classification task. Such joint classification methodology transcends source-specific considerations, rendering it applicable to remote sensing data from any diverse sources. The experimental results showcase the framework’s potential in achieving state-of-the-art performance in multimodal fusion classification task.

1 Introduction

The classification of remote sensing (RS) images has become increasingly significant in various domains such as urban planning [Dong et al., 2022], military applications [Ding et al., 2022a], environmental monitoring [Hu et al., 2023], and agricultural production [Meng et al., 2022]. Due to the limitations of sensor technology, a single type of RS image cannot meet the requirements of classification for diverse tasks. Consequently, the integration of multisource modalities has attracted increasing research attention. Commonly utilized types of RS images include hyperspectral image (HSI) [Dong et al., 2023], which provide rich spectral information, Synthetic Aperture Radar (SAR) images [Wang et al., 2022a], which contain amplitude and phase information, and Light Detection and Ranging (LiDAR) data [Xue et al., 2022], which reflects the precise height information. Relevant work has provided evidence of the advantages of utilizing multisource data in classification task.

The key point of joint classification of multisource data lies in effectively fusing information from diverse sources and harnessing their complementary attributes to enhance the expressive capacity of the model. Nevertheless, existing multisource fusion methods are typically tailored to two specific RS data sources, with the network architecture designed to accommodate their unique characteristics. The lack of generalizability in these data-specific networks become apparent

∗ Corresponding author

Figure 1: Overview of our proposed SymDiffuser. (Up) Pre-training: Different modalities of RS data are projected into the latent space through frozen encoder, and their mutual conditional distributions are modeled by a Coupled Symbiotic Diffusion Model (CSDiff) to capture the relationship between modalities. (Down) Fine-tuning: Downstream task fuses the features of each time step of CSDiff for fine-tuning to complete the joint classification.
when facing with diverse types of data. In addition, the acquisition of labels for RS images is a labor-intensive task due to their coverage of vast geographical areas. Therefore, there exists a significant quantitative disparity between the labeled and unlabeled data. The exploration of unlabeled multisource data correlations in supervised joint classification methods remain largely unexplored. Self-supervised based methods in computer vision have been demonstrated the effectiveness of acquiring feature representations from unlabeled data. However, most of self-supervised based works solely focusing on visual features of a single modality. In contrast, the effective integration of information from multiple modalities should be primarily emphasized in the joint classification of multisource data.

To overcome this dilemma, as depicted in Fig. 1, we propose a unified and self-supervised symbiotic diffusion framework, which is capable of fusing any two RS modality data for classification. We point out that the process of multimodal fusion can be conceptualized as the process of capturing the reciprocal conditional distribution between two modalities. In this way, the relationships and dependencies among modalities can be deeply explored and modeled, which is helpful for an efficient and accurate fusion. Specifically, the reciprocal conditional distributions between different modalities are gradually captured by a coupled symbiotic diffusion model. The feature at each step in the two Markov chains defined by the diffusion steps is used as input for downstream tasks. At each time step of the reverse process of diffusion, a Modality Perception Block (MPB) is employed to enhance the correspondence between different modalities under the same degradation. Specially, textual information is leveraged as weak supervision to guide the fusion feature towards the classification task. Our proposed framework is specifically designed to extract fusion feature from multimodal RS data, offering a promising direction for the development of integrated multimodal remote sensing data fusion classification approach. Our major contributions are as follows:

1) We propose a unified symbiotic diffusion framework for any multisource RS data classification, which learns the conditional distribution between the two modalities by a coupled symbiotic diffusion model, guiding the fusion process and facilitating a more effective combination of information from each modality.

2) To effectively enhance the correlation between modalities, we propose a modality perception block (MPB). MPB helps the exploration of interactions between different modalities, thereby enhancing the accuracy of modeling the conditional distribution.

3) We introduced a task-oriented condition injection (TCI) module to inject task-related prior knowledge into the model. It ensures that the model gains a more informed understanding of the data, leading to improved adaptability in downstream tasks.

2 Related Work

2.1 Multisource Fusion Classification in RS

Deep-learning based multisource RS data classification methods have been widely studied in recent years. In an early attempt [Chen et al., 2017], two independent Convolutional Neural Networks (CNNs) were proposed to extract the features of HSI and LiDAR respectively. To capture more specific information from different sources, some studies [Xu et al., 2018; Zhao et al., 2020] utilize two network branches to extract both spectral and spatial features from HSI, while focusing only on spatial feature for LiDAR. Such schemes simply cascade the features of different sources and fail to fully exploit the interrelationship between different modalities. To address this issue, Zhang et al. [Zhang et al., 2020] attempted to extract fusion feature in hidden layers through encoding and decoding processes. Hong et al. [Hong et al., 2021] investigated fusion strategies at various stages, which can be applicable to pixel-based and spatial–spectral classification respectively. Subsequently, attention mechanisms have been introduced to guide the complementary integration of multisource features [Mohla et al., 2020; Xue et al., 2022; Li et al., 2022a]. Li et al. [Li et al., 2022a] proposed A4CLNN, which incorporates a composite attention mechanism to fuse enhanced feature representations from both spatial and spectral domains in HSI and LiDAR data. Another group of works [Mohla et al., 2020] explored semantic correlations between different source features by designing cross-attention mechanisms. Xue et al. [Xue et al., 2022] developed a DHViT structure, employing cross-attention feature fusion pattern to fuse heterogeneous features from multi-modality data adaptively. Decision-level fusion was then employed to integrate these heterogeneous features. Methods such as NNC [Wang et al., 2023] and CCL [Jia et al., 2023] utilized contrastive learning to reduce the heterogeneity between different modalities. More recently, Huo et al. [Huo et al., 2023] proposed a fusion method that captures the relationship between different perspectives within each modality at the patch level, which achieves superior results. However, the above methods utilize two networks tailored to two specific RS data sources to extract features, yet these methods do not fully explore the inter-modal relationships, thereby failing to capture the intricate structures and correlations within multisource RS data. Such deficiency leads to the modal with suboptimal utilization of multisource RS data.

2.2 Denoising Diffusion Probabilistic Model

The denoising diffusion probability model (DDPM) has emerged as a mainstream generation model, garnering notable achievements in various tasks such as image restoration [Zhu et al., 2023; Wang et al., 2022b; Luo et al., 2023], image super-resolution [Metzger et al., 2023; Rombach et al., 2022], style transfer [Li et al., 2023a; Zhang et al., 2023], and text-to-image generation [Xu et al., 2023a; Kumari et al., 2023]. Compared to the Generative Adversarial Network (GAN), which aims to achieve feature space transformation through a direct forward process, DDPM decomposes the generation process into multiple denoising steps with well-defined data distribution. This decomposition approach provides enhanced stability in generation while offering effective controllability and flexibility. The controlled sampling process of DDPM has facilitated the design of numerous conditional diffusion models. Gao et al. [Gao et al., 2023] developed a low-resolution (LR) conditioning network...
to encode the image without priors, and then combined it with a scaling factor in DDPM to facilitate continuous image super-resolution. Kawar et al. [Kawar et al., 2023] introduced imagic for non-rigid edits on a single image, which employs natural language text as a prompt to pass the semantically meaningful mixture of image embedding and target text embedding to DDPM. Recent studies have started to employ the diffusion model to multimodal generation. MM-diffusion [Ruan et al., 2023] used two coupled diffusion models to learn the joint distribution of audio and video for the generation of aligned audio-video pairs. The proposed SymDiffuser distinguishes itself from numerous existing diffusion models by placing emphasis on the modeling of the conditional distribution between two modes, thereby acquiring more effective modality fusion information for classification task.

3 Method

3.1 Motivation and Overview

In the joint classification of multisource RS data, the purpose of multimodal fusion is to combine information from different modalities and leverage the complementary characteristics between them to enhance the model’s comprehension of classification task. During multimodal fusion, the exchange of pertinent information between modalities needs to be facilitated, which requires the model to discern the relationship between each modality and how they can mutually reinforce or complement one another. This relationship can be efficiently represented by a conditional distribution. Conditional distributions illustrate how the probability of one variable changes based on the observation of another variable, aiding in the comprehension of the influence of information between different modalities. Based on this fact, we adopt DDPM to model the conditional distribution between different modalities of RS data, with the aim of improving the mutual understanding between the two modalities and facilitating a more effective and balanced combination of modality during the fusion process.

Our proposed SymDiffuser is a unified framework for joint classification of multisource RS data, as shown in Fig. 1. It consists of two stages: pre-training and downstream fine-tuning. The high-level framework of pre-training incorporates a coupled symbiotic diffusion model, where we independently input the latent features of two modalities and perform a two-way modality conditional distribution modeling. The degraded feature of one modality and the corresponding diffusion feature from the other modality are correlated using a Modality Perception Block (MPB) during each re-
verse diffusion step. Subsequently, U-ViT based denoising networks are used for single-step modal transformation completion. We utilize the text captions produced by the supervised labeling process to train a Task-oriented Condition Injection module (TIC). It leverages the diffusion features from each step and the text encoder embedding of category names to provide guidance for the fusion process in classification task. Once pre-trained, we perform multimodal RS images classification with features from each time step in the diffusion models.

3.2 Preliminaries of Vanilla Diffusion

The diffusion model is a type of generative model which utilizes multi-step denoising to predict specific data distributions from random noise [Ho et al., 2020]. It consists of two fundamental components: the forward process and the reverse process. In the forward process, multi-step Gaussian noise is incrementally added to data that needs to be predicted. This iterative process persists until the data distribution degenerates into a state of approximately pure Gaussian noise. Assume \(X \) as the data distribution to be predicted, \(x_0 \) as a sample in \(X \), and \(x_t \) as the noise sample at time step \(t \). The forward process of diffusion model can be expressed as:

\[
q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t} x_{t-1}, \beta_t I)
\]

\[
q(x_{1:T} | x_0) = \prod_{t=1}^{T} q(x_t | x_{t-1})
\]

(1)

where \(t \in [1, T] \), and \(\beta_0, \beta_1, ..., \beta_T \) represent a pre-defined variance schedule.

The reverse process of the diffusion model is characterized as a Markov chain that aims to recover a specific data distribution through multi-step denoising networks. At each time step \(t \), the reverse process is defined as \(p_{\theta}(x_{t-1} | x_t) \), where \(\theta \) is typically implemented as a denoising network. By following this Markov process, the model progressively denoises the input \(x_t \) to ultimately obtain the final result. The reverse process of diffusion model can be expressed as:

\[
p_{\theta}(x_{t-1} | x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))
\]

\[
p_{\theta}(x_{0:T}) = p(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1} | x_t)
\]

(2)

where \(\mu_{\theta} \) represents the predicted mean value by the network \(\theta \). The vanilla diffusion model can be expanded to encompass the modeling of the conditional distribution \(p_{\theta}(x_0 | c) \) by introducing conditions into the reverse process. Here, \(c \) represents a data distribution distinct from \(x_0 \), such as images or textual information with varying styles.

In our method, a coupled symbiotic conditional diffusion model is designed to promote the fusion of different RS modalities by delving into their mutual conditional distributions.

3.3 Coupled Symbiotic Diffusion Model

As mentioned in the motivation, we suggest to model the conditional distribution between different modalities to facilitate multimodal fusion. It is essential to consider the bidirectional relationship of two modalities from one to another when modeling the conditional distribution. Assume that there are two different types of RS data: modality \(A \) and modality \(B \). We design a coupled symbiotic diffusion model (CSDiff) to capture the conditional distributions \(p(A | B) \) and \(p(B | A) \) simultaneously. To enable the model to effectively handle complex data distributions, similar as Stable Diffusion [Rombach et al., 2022] and UniDiffuser [Bao et al., 2023b], the data of both modalities are encoded into latent space by two frozen ViT-based encoders \(\varepsilon_A \) and \(\varepsilon_B \), respectively. The latent features \(x_{A_0} \) and \(x_{B_0} \) obtained separately by \(\varepsilon_A \) and \(\varepsilon_B \) of the two modalities are subsequently degraded using two independent forward processes. Taking modality \(A \) as an example, its forward process at timestep \(t \) can be expressed as follows:

\[
q(x_{A_t}, x_{A_{t-1}}) = \mathcal{N}(x_{A_t}; \sqrt{1-\beta_t} x_{A_{t-1}}, \beta_t I)
\]

(3)

where the schedule sequence \(\beta \) is shared of two modalities.

The forward process for modality \(B \) is same as modality \(A \). Different from the forward process of the two modalities, the reverse process of the diffusion model in the generation task cannot be directly applied to CSDiff, as it presents two key challenges. i) The general conditional diffusion model utilizes fixed conditional information and degenerate features from the current step for reconstruction at each step. However, this approach overlooks the correspondence between data from different modalities under the same degradation level, which is essential for multimodal fusion task. ii) In the context of complex multimodal data, the conventional cascade of conditions typically employed in conditional diffusion models faces challenges in capturing the intricate modal relationships. To tackle these problems, we redefine the reverse process in CSDiff, which can be expressed as follows:

\[
p_{A|x_{A_t}, x_{B_t}} \mathcal{N}(x_{A_t}; \mathcal{F}(x_{A_t}, x_{B_t}, t))
\]

\[
p_{B|x_{A_t}, x_{B_t}} \mathcal{N}(x_{B_t}; \mathcal{F}(x_{A_t}, x_{B_t}, t))
\]

(4)

where \(x_{A_t} \) denotes the feature of modality \(A \) at time step \(t \) in the forward process, \(x_{B_t} \) is the feature in the reverse process, which is same for modality \(B \). As depicted in Eq. (4), the output of the \(t \)-th step for each mode is computed based on its own degradation feature, the time step \(t \), and the forward degradation feature of the corresponding \(t \)-th step in the other modality. This design is centered around the concept that the features of both modes at each time step are interdependent under the same level of degradation conditions. Consequently, this coupling strengthens the interconnectedness between the different levels of multimodal features. To train the denoising process, the CSDiff predict the added noise using the standard MSE loss:

\[
L_{mse_A} = \mathbb{E}_{t \sim [1, T]} \left\| \varepsilon - \mathcal{F}_A(x_{A_t}^{r_{x_{A_t}}, x_{B_t}^{r_{x_{B_t}}}, t}) \right\|^2
\]

\[
L_{mse_B} = \mathbb{E}_{t \sim [1, T]} \left\| \varepsilon - \mathcal{F}_B(x_{A_t}^{r_{x_{A_t}}, x_{B_t}^{r_{x_{B_t}}}}, t) \right\|^2
\]

(5)

3.4 Modality Perception Block

To facilitate the alignment between two modalities in noise prediction and learn their correlation, a cross-attention based MPB is employed. MPB is embedded before each step of the
denoising network, which aims to capture and strengthen the correlations between two modalities within the fused feature representation. Taking modality A in CSDiffer as an example, the cross-attention mechanism can be formulated as follows:

$$Q = \phi_q(x_{Bt}^f), \quad K = \phi_k(x_{At}^r), \quad V = \phi_v(x_{At}^r)$$
$$F_{att} = \frac{QK^T}{\sqrt{C}}, \quad F_{fused} = W\text{softmax}(F_{att})V + x_{At}^r$$ (6)

where C is the dimension of feature, ϕ_q, ϕ_k, ϕ_v are Multi-layer Perceptron (MLP) and W refers to learnable weights to generate final fused features F_{fused}. Once F_{fused} is obtained, it is treated as the input to the denoising network. The U-ViT based network [Bao et al., 2023a] is employed as the denoising network in each step, leveraging the significant advantages of ViT for multimodal data processing. In U-ViT, time steps t and fused feature F_{fused} are treated as tokens, and long-range skip connections are employed between shallow and deep layers. The reverse process of CSDiffer, represented by Eq. (4), can be further refactored as follows:

$$p_{a}(x_{A_{t-1}}^r | (x_{A_t}^r, x_{B_t}^f)) = N(F_{A}(F_{fused}^A, t))$$
$$p_{b}(x_{B_{t-1}}^f | (x_{A_t}^r, x_{B_t}^f)) = N(F_{B}(F_{fused}^B, t))$$ (7)

where F_{A} and F_{B} are U-ViT based denoising networks in tth step for modality A and modality B, respectively. After the last step of the reverse process, the features of two modalities are inputted into their corresponding frozen ViT-based decoder D_A and D_B to accomplish reconstruction.

After the conditional distributions $p(A|B)$ and $p(B|A)$ modeled by CSDiffer, in the subsequent downstream task, the features at each time step t are utilized to accomplish the fusion classification task involving multiple modalities. The comprehensive details of this process will be elaborated upon in the last subsection.

3.5 Task-oriented Condition Injection

In order to align the focus of the integrated features in pre-trained models with downstream classification task, a Task-oriented Conditional Injection (TCI) module is introduced. Textual information about categories typically contains semantic details regarding the respective categories. By injecting this information into the reverse process, the model can benefit from richer semantic guidance, thus enhancing its ability to comprehend and leverage semantic differences among different categories. This facilitates the inclusion of more discriminative information in features during the pre-training phase, enabling the model to adapt to classification task. Hence, we advocate for the integration of visual features with text that carries rich semantic meaning. We generate corresponding text prompts for each category and serve these prompts as conditions for injecting the U-ViT denoising network in the reverse process of the diffusion model.

Assuming that the input multimodal data belongs to a known category Cls, where Cls represents the category name. We set “a sample of [Cls]” as the text prompt. The frozen CLIP text encoder T is utilized to extract the embedding of the text prompt. This text embedding, along with the fusion feature obtained from Eq. (6), is then passed through a cross-attention module to enhance the correlation between the diffusion feature and high-level semantics. The process of task-oriented condition injection can be formulated as follows:

$$\epsilon_{text-driven} = \epsilon_\theta(F_{fused}, T(Cls))$$ (8)

where ϵ_θ is a cross-attention block. Significantly, the network performs semantic injection solely on labeled data, while unlabeled data undergoes the denoising process directly in the reverse process.

3.6 Multi-step Feature Fusion

Once the pre-training phase is completed, we input two different modalities of remote sensing data into the proposed framework during the downstream classification task. This process allows us to obtain fusion features at different levels. The continuous generation steps of the diffusion model enable a gradual conversion between different modalities. As a result, each time step contains varying degrees of modal fusion information. Based on this observation, we extract the fusion features from each time step within the co-occurrence diffusion model. These features capture the diverse levels of fusion information. We then combine these different levels of features and feed them into the classification head.

The network architecture employed for processing the fusion features uses ViT. Each time step is encoded and embedded to provide specific time information for each step within the network. Finally, the fused feature representation is passed through a simple MLP to output the classification results.

4 Experimental

4.1 Datasets

We validate SymDiffuser on three real multi-source remote sensing datasets. To explore its potential in more types of remote sensing data fusion classification, we construct simulated multi-source remote sensing data on two additional datasets for further validation.

HSI-MSI 2012 Houston data: The 2012Houston dataset comprises HSI and MSI data over the University of Houston campus and the surrounding urban regions. This image consists of 349×1905 pixels and encompasses 15 different categories. HSI was collected by CASI-1500, encompasses 144 spectral bands ranging from 380 nm to 1050 nm. MSI is composed of the same size with HSI but 8 spectral bands.

HSI-LiDAR MUUFL data: The MUUFL dataset contains registered HSI and LiDAR-based DSM over the University of Southern Mississippi Gulf Park Campus. The spatial size of this data is 325×220 pixels, with the spatial resolution in 1 m and 11 categories. HSI consists 64 bands ranging from 375 nm to 1050 nm at a spectral sampling of 10 nm. The LiDAR data has the same spatial size and resolution.

HSI-SAR Augsburg data: The Augsburg dataset consists of HSI and PolSAR image, over the city of Augsburg, Germany. The scene comprises a total of 332×485 pixels and encompasses a spectral range spanning from 0.4μm to 2.5μm, consisting of 180 spectral bands for HSI and 7 categories. Additionally, the dual-Pol (VV-VH) SAR image contributes with four distinct features, namely VV intensity, VH
4.2 Comparison with State-of-the-Art Methods

In order to verify the effectiveness of the proposed network in the joint classification of multisource RS data, it is comprehensively compared with the state-of-the-art DL-based methods. Specifically, competing methods designed specifically for different modalities were selected on three datasets. For HSI-MSI dataset, SS-MAE [Lin et al., 2023], UCSL [Yao et al., 2023a], ExVit [Yao et al., 2023b], and DSTD [Xu et al., 2023b] are employed. For HSI-LiDAR dataset, GLT-Net [Ding et al., 2022b], Sal²RN [Li et al., 2022b], S²ENet [Fang et al., 2021], and HCT [Zhao et al., 2022] are employed. For HSI-SAR dataset, CCRNET [Wu et al., 2021], MFT [Roy et al., 2023], MACN [Li et al., 2023b], and SepDGConv [Yang et al., 2022] are employed. Given the lack of joint classification research on PAN+LiDAR, RGB+LiDAR, PAN+SAR, and RGB+SAR data combinations, the methods for HSI+LiDAR is applied to combinations with LiDAR data, and the methods for HSI+SAR is applied to combinations with SAR data. For fair comparisons, we use the original code provided by the author.

The quantitative results of the proposed method and competing methods on three different multisource datasets are presented in Table 1. By leveraging the data correlation across different modalities, it is evident that our proposed method consistently achieves the highest accuracy on all datasets in terms of overall accuracy (OA), average accuracy (AA), and Kappa coefficient. For example, our overall accuracy achieved on the HSI-MSI dataset is 91.63%, representing a significant improvement of 6.38% over SS-MAE, 3.45% over ExVit, and 4.02% over DSTD. The classification results of the proposed method on the three datasets are illustrated in Fig. 3, Fig. 4 and Fig. 5, respectively, highlighting its superiority compared to other methods. In comparison to other methods, the proposed method yields qualitative results that are more closely aligned with ground truth. For instance, it is a challenge to distinguish “healthy grass” and “stressed grass” in 2012Houston dataset. As shown in Fig. 3, compared with other methods, the classification results of the proposed method on 2012Houston dataset show that different...
Table 3: Classification accuracy of dataset with three modals

<table>
<thead>
<tr>
<th>Dataset(2012Houston)</th>
<th>OA(%)</th>
<th>AA(%)</th>
<th>$\kappa \times 100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS+MS+LiDAR</td>
<td>93.69</td>
<td>94.51</td>
<td>93.18</td>
</tr>
<tr>
<td>HS+MS</td>
<td>93.69</td>
<td>94.51</td>
<td></td>
</tr>
<tr>
<td>MS+LiDAR</td>
<td>93.69</td>
<td>94.51</td>
<td></td>
</tr>
<tr>
<td>LiDAR</td>
<td>93.69</td>
<td>94.51</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Effect of different components

<table>
<thead>
<tr>
<th>Variant</th>
<th>Effect</th>
<th>OA(%)</th>
<th>AA(%)</th>
<th>Augsburg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variant - 1 (CSDiff replaced)</td>
<td>85.72</td>
<td>84.41</td>
<td>86.85</td>
<td></td>
</tr>
<tr>
<td>Variant - 2 (w/CSDiff only)</td>
<td>90.03</td>
<td>87.96</td>
<td>88.25</td>
<td></td>
</tr>
<tr>
<td>Variant - 3a (w/o MPB)</td>
<td>89.67</td>
<td>88.25</td>
<td>89.14</td>
<td></td>
</tr>
<tr>
<td>Variant - 3b (MPB replaced)</td>
<td>89.51</td>
<td>88.93</td>
<td>88.82</td>
<td></td>
</tr>
<tr>
<td>Variant - 4 (w/o TIC)</td>
<td>91.18</td>
<td>88.84</td>
<td>89.39</td>
<td></td>
</tr>
<tr>
<td>Proposed</td>
<td>91.63</td>
<td>90.42</td>
<td>91.20</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5: Classification maps of the Augsburg dataset.

Figure 6: Example of the feature distribution.

Specially, the proposed SymDiffuser capture the intermodal relationship through establishing conditional distribution for fusion. SymDiffuser is applicable to any modality data and can naturally extend to accommodate any number of modal inputs by establishing a chained conditional distribution. The classification result of the extended scheme, which fuses three different modal data, are presented in Table 3.

4.3 Ablation Study

To verify the effectiveness of different metrics in our method, we conduct ablation studies with four variants of SymDiffuser. The details are as follows.

Variant-1

In Variant-1, CSDiff is replaced by VAE. CSDiff is used to explore the interdependence between different modality data, so that the model can enhance the understanding of modal relationships to effectively fuse information from different sources. The data from different sources are fed into two frozen mode-specific encoders ε_A and ε_B, and the extracted latent space features are cascaded for fusion before classification. As shown in Table 4, the use of CSDiff increases by 5.91% on OA in 2012Houston dataset compared to using the cascaded way to fuse features for classification.

Variant-2

To further validate the effectiveness of the proposed CSDiff, the MPB and TIC modules are removed in Variant-2, and the experimental results are shown in the second row of Table 4. Compared to the result by using VAE shown in the first row, employing CSDiff without including MPB and TIC has improvements of 4.31%, 6.01%, and 4.35% in the OA on the three datasets.

Variant-3

The mode-aware block uses the fusion features of the two modalities to predict the noise, which enhances the correlation of the two modalities in the process of establishing the conditional distribution of each other. We remove the MPB in the model to verify its effectiveness in Variant-3a. Given that the primary objective of MPB is to enhance modal correlation, we adopted a direct strategy in Variant-3b to replace MPB: aligning and concatenating features from modality A and modality B, subsequently inputting the merged features into the denoising network. From Table 4, we can find that compared with not using MPB, model with MPB has an average improvement of 2.06% in the three datasets.

Variant-4

The Task-oriented Conditional Injection module (TCI) seeks to associate the visual features of each category with their corresponding textual descriptions by integrating textual information into CSDiff. TCI facilitates the enrichment of features with more discriminative information during the pre-training stage, enhancing adaptation to multi-source classification tasks. In Variant-4, we remove TCI to verify its impact on classification accuracy. As can be seen from Table 4, the model adopting the task guidance module has 0.45%, 1.58%, and 1.81% improvements in the OA of the three datasets.

5 Conclusion

We proposed SymDiffuser, a unified framework for any multimodal RS data classification. By modeling the conditional distribution, SymDiffuser effectively captures the interdependence and interaction between different modalities. This profound understanding of the modality relationship enables the efficient integration and fusion of information from diverse sources. To further enhance the correlation between modalities and improve the model’s ability to comprehend downstream classification task, we introduce the modality perception block and task-oriented conditional injection module. By offering insights into the modal relationship and fusion process, CSDiff Pre-training opens up new avenues for advancing the field of multimodal data fusion and classification in RS applications.

Acknowledgements

This work was supported in part by the Young Talent Fund of Xi’an Association for Science and Technology under Grant 095920221320 and Grant 959202313052, the China Postdoctoral Science Special Foundation under Grant 2022T150508 and 2023T160502, the Young Talent Fund of Association for Science and Technology in Shaanxi under Grant 20230117, the National Natural Science Foundation of China under Grant 62101414 and Grant 62201423, and the China Postdoctoral Science Foundation under Grant 2021M702546 and 2021M702548.
References

