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Abstract
Pathological slides are commonly gigapixel images
with abundant information and are therefore sig-
nificant for clinical diagnosis. However, the ultra-
large size makes both training and evaluation ex-
tremely time-consuming. Most existing methods
need to crop the slide into patches, which also
leads to large memory requirements. In this pa-
per, we propose the Self-reform Multilayer Trans-
former (SMT) to accelerate the pathological image
diagnosis and prognosis. Inspired by the pathol-
ogists’ diagnostic procedure, SMT is designed to
achieve layer-by-layer focus on critical regions. In
the forward process, the first layer takes thumb-
nails as inputs and measures the significance of
each patch that deserves focusing. Images from fo-
cused regions are cropped with a higher magnifi-
cation and used as the input of the next layer. By
analogy, the third layer inputs are focused images
of second layer, which contain abundant cellular
features. In addition to the forward focusing, the
backward reform strategy is proposed to improve
the precision of former layers. This cyclic pro-
cess achieves iterative interactions for better per-
formance on both classification and focusing. In
this way, only a small part of critical patches are
required in SMT for diagnosis and prognosis. Suf-
ficient experiments demonstrate that SMT achieves
hundreds times faster speed, while achieving com-
parable accuracy and less storage compared with
existing SOTA methods.

1 Introduction
Pathological images are widely applied in clinical diagnosis
and prognosis. These whole-slide images (WSI) are com-
monly gigapixel and contain abundant structural and cellu-
lar features. Therefore, the pathological image is capable
for many clinical tasks and acknowledged as the “gold stan-
dard” for cancer diagnosis and prognosis. Recent researches

∗Zunlei Feng is the corresponding author. (E-mail: zun-
leifeng@zju.edu.cn)

have applied deep learning models on various pathological
datasets, including the prostate cancer [Khani et al., 2019;
Li et al., 2020; Ström et al., 2020], liver cancer [Feng et al.,
2021; Liao et al., 2020], breast cancer [Xu et al., 2019], etc.

The common procedure of existing methods is cropping
each WSI into patches [Campanella et al., 2019; Zhou et
al., 2017]. These micro-scale patches contain cellular in-
formation and are used for classification individually. Be-
sides, many recent methods attempt to improve diagnosis ac-
curacy by integrating the global feature. But considering the
ultra-large size, all these methods have the critical problem
of enormous consumption of space and time. For each WSI,
hundreds of thousands of patches are required to generate the
slide-level prediction, which costs hundreds seconds.

To accelerate the classification on pathological images,
some researches [Xu et al., 2019; Shao et al., 2021; Thandi-
ackal et al., 2022] proposed weakly-supervised methods
based on multiple instance learning (MIL). These methods
first crop each WSI into patches and extract embeddings in-
dividually. The pooling operation is conducted on these em-
beddings for slide-level classification. However, since each
WSI contains numerous patches, processing each slide takes
hundreds of seconds and requires multiple gigabytes of mem-
ory. Besides, the cropped patches were independent, leading
to the loss of global information and limited performance.

Through investigating the characteristics of pathological
images, we find most regions in WSIs are inessential for clas-
sification, and there are many regions containing repetitive
features. It indicates that only a small part of the WSI may
contain sufficient information for cancer diagnosis and prog-
nosis. Clinically, pathologists will select suspicious regions
on the thumbnail with macro scale and then zoom in to diag-
nosis with micro scale. Some examples of pathological slides
are shown in Figure 1. This diagnostic procedure demon-
strates that, although the thumbnails do not contain detailed
features used for accurate classification, they can identify re-
gions of suspected cancer. Aiming at these characteristics,
this paper proposes the Self-reform Multilayer Transformer
(SMT) for fast classification of pathological images.

SMT contains three layers to handle multiple scales of
WSIs. The focusing strategy is applied in former layers to se-
lect suspicious regions of cancer from the macro-scale image,
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Figure 1: Illustration of positive and negative pathological slides.
Each slide is ultra-large image with hundreds of billions pixels. Dur-
ing clinical diagnosis, pathologists focus on several suspicious re-
gions in the thumbnail and zoom in for cellular features.

then these regions are cropped with the larger magnification
and used as the input of the next layer. It is worth noting that
former layers do not need to achieve accurate classification
from thumbnails. The last layer of SMT is trained from the
focused micro-scale images, which contain abundant cellu-
lar features for precise diagnosis and prognosis. Besides, a
cyclic process including forward focusing and backward re-
form strategy is proposed to improve the performance of both
classification and focusing. So that SMT can not only achieve
accurate classification from crucial regions, but also save time
and space by ignoring inessential regions.

Therefore, this paper makes the following contributions:
1) This paper proposes the SMT inspired by pathologists’ di-
agnostic procedure. Through focusing on crucial regions of
cancer from macro to micro scale, the SMT is the first method
that achieves dramatic prediction acceleration for patholog-
ical images without sacrificing accuracy or requiring addi-
tional storage. 2) A cyclic process is proposed to ensure ac-
curacy while achieving fast prediction. The forward focusing
selects suspected cancer regions for the latter layer. The back-
ward rethinking optimizes the former layer with more pre-
cise information. 3) Exhaustive experiments demonstrate that
SMT exhibits comparative performance on various patho-
logical datasets with only 4 ∼ 8 high-response patches of
each layer, while achieving an average acceleration of 162.25
times compared with existing methods.

2 Related Work
Recently, pathological images are widely applied for various
clinical tasks including tumor region detection [Campanella
et al., 2019], tumor grading [Bulten et al., 2022; Yu et al.,
2021], and prognostic prediction [Yu et al., 2016; Chen et al.,
2023]. This paper is to achieve acceleration in both diagnosis
and prognosis tasks, which is related with two categories of
recent literature including deep learning acceleration method
and WSI classification framework.

There are many researches on efficient classification [Wang

et al., 2021a; He et al., 2021; Hu et al., 2023; Chen et al.,
2024; Ma et al., 2024; Ma et al., 2023]. Dynamic Trans-
former [Wang et al., 2021b] adaptively adjusted the token
number for each sample. QuadTree Attention [Tang et al.,
2022] conducted the token pyramid to calculate attention
from coarse to fine. CF-ViT [Chen et al., 2022a] designed
an identification mechanism to further split the informative
patches to ensure performance while accelerating. These
methods achieved efficient classification mainly by reducing
the calculation of attention. But for pathological datasets, the
computational cost is caused by the ultra-large size, which
can not be solved by reducing tokens or pruning. Besides, the
features of various scales vary greatly in pathological images.
As a result, the multi-scale framework for traditional images
cannot perform well for pathological images.

To improve the performance, several researchers attempted
to achieve pathological diagnosis based on MIL [Chikontwe
et al., 2020; Zhao et al., 2020]. CAMEL [Xu et al., 2019]
is proposed to split the image into latticed instances and gen-
erate instance-level labels by MIL, achieving WSI segmenta-
tion with only slide-level labels. Aiming at the label quality
problem, authors in [Diao et al., 2019] prevented the influ-
ence of noisy labels by adding some artificial samples, which
were used for the simulation of blood vessels or staining
impurities. Some researchers aim to predict through global
recognition. NIC [Tellez et al., 2019] compressed the WSI
by aggregating features of cropped patches. HIPT [Chen et
al., 2022b] applied the scaling transformer to aggregate low-
scale features into high-scale images. Both these two meth-
ods used the aggregated feature for slide-level classification.
These methods require to identify all patches individually be-
fore confirming the final result, which leads to the problem of
the massive consumption of time and space.

To achieve fast inference on pathological images, an
attention-based learning called CLAM [Lu et al., 2021] is
proposed to identify sub-regions of high diagnostic value for
slide-level classification. In the quadtree-based image rep-
resentation method [Jewsbury et al., 2021], patches with
sufficient information will be further divided into four sub-
regions. Still, acceleration in these ways would be limited for
the ultra-large size. Some MIL-based methods were proposed
for acceleration [Campanella et al., 2019; Li et al., 2021;
Javed et al., 2022]. MIL and Transformer were combined to
explore both morphological and spatial information for better
interpretability [Shao et al., 2021]. Differentiable zooming
was proposed in ZoomMIL [Thandiackal et al., 2022] and
achieved fast training. However, it relied on massive pro-
cessing to aggregate tissue-context information from WSIs,
which could cause hundreds of seconds per slide. Conversely,
with the focusing strategy and cyclic optimization to ensure
precision, our proposed SMT can focus on suspicious can-
cer regions with thumbnails, achieving dramatic acceleration
without pre-processing or extra storage.

3 Methodology
Self-reform Multilayer Transformer (SMT) is proposed to
achieve fast classification based on pathologists’ diagnostic
procedure. The overall methodology is illustrated in Fig-
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Figure 2: The illustration of Self-reform Multilayer Transformer (SMT). The framework contains three layers, which take inputs with the
same size and different magnifications. In former two layers, Focusing predictors ffocus predicts the score qi1 on all patches. Based on the
regions of top-K focused patches (green boxes), images with L-times larger magnification are cropped from the original WSI, which are used
as the inputs of the next layer. The forward (blue) and backward (orange) losses are shown at the bottom of figure, where the solid and dotted
lines denote the optimized object and the target, respectively. These losses are applied to train SMT for accurate classification and focusing.

ure 2. This section includes the preliminary about notations,
the detailed forward and backward strategy of SMT, and the
weakly-supervised training strategy.

3.1 Problem Formulation
Given a pathological dataset of WSIs, thumbnails with the
magnification of M are used as inputs of the first layer, de-
noted as {(X [1]

n1 ,Y
[1]
n1 )|1 ≤ n1 ≤ N}, where N denotes

the sample amount, X [1]
n1 and Y [1]

n1 denote the n1-th sample
and slide-level label of diagnosis or prognosis. Each sam-
ple will be cropped into L × L patches as the input of trans-
former, denoted as {x[1]

i1
|1 ≤ i1 ≤ L2}, where L2 is the

number of patches. The output embedding of each patch
and the class token is denoted as v

[1]
i1

and v
[1]
cls, respectively.

For all the patches, we evaluate the probability of contain-
ing cancer and denote it as {q[1]i1

}L2

i1=1. Let tk denote the
subscript of patch that ranks k-th in the focusing prediction.
Top-K patches {x[1]

t1 , ..., x
[1]
tK} will be selected with a larger

magnification of M × L for the second layer, denoted as
{(X [2]

n2 ,Y
[2]
n2 )|1 ≤ n2 ≤ K}. Y [2]

n2 is determined based on
the annotated tumor region. In a similar way, we denote the
subscripts of top-K focusing predictions of the second layer
{tt1, ..., ttK}, the inputs of the third layer {(X [3]

n3 ,Y
[3]
n3 )|1 ≤

n3 ≤ K}, the cropped patches of the second and third layers
{x[2]

i2
|1 ≤ i2 ≤ L2} and {x[3]

i3
|1 ≤ i3 ≤ L2}. For three lay-

ers, the transformer encoders are denoted as V iT [1], V iT [2],
V iT [3], the output logits and predictions are denoted as z[1],
z[2], z[3] and p[1], p[2], p[3], respectively.

3.2 Self-reform Multilayer Transformer
The proposed SMT contains three layers transformer, aim-
ing to focus on tumor regions from macro scale to micro

scale. The inputs of three layers are patches with the same
size but different magnifications. In addition to the classifica-
tion, SMT training includes forward focusing and backward
optimization. Inspired by pathologists’ diagnostic procedure,
the forward focusing strategy selects patches deserving atten-
tion for the next layer. The backward optimization enhances
the performance of the former layer with detailed features.
Through such cyclic training, the SMT can iteratively im-
prove the accuracy of focusing and classification.

Forward Focusing
For the first layer of SMT, the thumbnails of WSIs X [1] are
macro-scale images that do not contain cellular information,
but can be used to identify suspicious regions that are most
likely to contain cancer. Each image is cropped into patches
and inputted into the transformer encoder V iT [1]. Through
self-attention, the embedding of class tokens can be used for
classification. For each sample X [1]

n1 , the loss function used to
train the first layer is defined as:

L[1]
cls = − 1

C

C∑
c=1

(
Y [1]
c log p[1]c

)
, (1)

where C denotes the number of categories, and pc denotes the
probability on c-th category.

Different from the traditional ViT for classification, an ad-
ditional focusing predictor f [1]

focus is applied in SMT to evalu-
ate the patches that worth focusing on for the next layer. This
predictor takes the embedding of each patch v

[1]
i1

as input to
assess the significance to be magnified and focused. In order
to train the focusing predictor, this paper propose a measure-
ment for each patch x

[1]
i1

, which is defined as:

S
[1]
i1
(e) = ϵS

[1]
i1
(e− 1) + (1− ϵ)

L2∑
j1=1

∂
∑C

c>0 p
[1]
c (e)

∂αj1,i1

, (2)
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where S
[1]
i1
(e) and p[1](e) denote the accumulated focusing

score and classification probabilities of the first layer at e-th
epoch,

∑C
c>0 p

[1]
c denotes the summary probability of posi-

tive categories, αj1,i1 denotes the attention weight in the first
encoder of transformer, and ϵ is the hyper-parameter for en-
semble. In the first encoder of the transformer, the output to-
ken bout is the weighted sum of all inputted tokens bin, which
is denoted as boutj1

=
∑

i1
αj1,i1b

in
i1

. Since αj1,i1 is the weight

of bini1 to boutj1
, the gradient ∂

∑C
c>0 p

[1]
c /∂αj1,i1 represents the

influence of inputted feature bini1 on the probabilities of posi-
tive category through boutj1

. Considering the gradient reflects
the current influence, the score is updated through temporal
ensembling. Compared to existing attribution methods, this
measurement directly evaluates the significance towards the
positive categories. Even for samples that are misclassified
as negative due to low resolution, this strategy can identify
regions that are likely to contain cancer and conduct further
classification after magnification in latter layers.

Let S̃[e]
i1

denotes the normalized focusing score among all
L2 patches of each image, which represents the patch signif-
icance for cancer classification and is used as the targets of
focusing predictors. The loss function for training focusing
predictor is defined as:

S̃
[1]
i1

=
S
[1]
i1

−min
(
{S[1]

j1
}L2

j1=1

)
max

(
{S[1]

j1
}L2

j1=1

)
−min

(
{S[1]

j1
}L2

j1=1

) ,
L[1]
focus =

1

L2

L2∑
i1

∣∣∣f [1]
focus(v

[1]
i1
)− S̃

[1]
i1

∣∣∣ ,
(3)

where v
[1]
i1

denotes the output embedding of i1-th patch,

f
[1]
focus denotes the focusing predictor.

Based on the focusing predictions, the subscripts
{t1, ..., tK} of top-K patches are obtained. The patches con-
taining the same region as {x[1]

t1 , ..., x
[1]
tK} are cropped with

a larger magnification and used as the inputs of the second
layer, denoted as {(X [2]

n2 ,Y
[2]
n2 )|1 ≤ n2 ≤ K}. It is worth not-

ing that the input image of the second layer X [2]
n2 has the same

size as the X [1]
n1 but L times magnifications. And X [2]

n2 con-
tains the same region as the patch x

[1]
tn2

with L times larger

size. Consequently, X [2]
n2 contains more clear pathological

features than x
[1]
tn2

and can be used for better classification
in the second layer. By analogy, the input of the third layer
X [3]

n3 is also the same region as the patch of the second layer
x
[2]
ttn3

, which contains more detailed cellular features.
Similar to the first layer, the latter two layers are trained by

L[2]
cls and L[3]

cls for classification. From these layers, SMT can
extract structural and cellular features from crucial regions of
interest, and the final prediction is obtained based on these
two layers. Besides, focusing predictors (f [1]

focus and f
[2]
focus)

are only applied in the first two layers, ensuring that the inputs
of the third layer are crucial regions for determining cancer.

Even in the inference stage, SMT only takes (1 + K + K2)
patches for each WSI, which saves a lot of storage space.

Backward Rethinking Strategy
In the former layers especially the first layer, the input con-
tains the macroscopic vision with limited cellular features.
Conversely, the latter layers are trained by high-magnification
patches, which contain more abundant information. For this
reason, backward optimization is proposed to improve the
performance of former layers, including the classifier and the
focusing predictor. The optimized former layers can provide
more accurate cancer-focusing results for the latter layers in
the forward process. This iterative optimization enables the
SMT to accurately predict by focusing only on a few regions.

To ensure the reliability of the focusing, a recheck strategy
is proposed to constrain the training of focusing predictors.
The prediction results of focused patches are used to recheck
the focusing results of the former layer. If the focusing pre-
dictor selects the wrong patches without cancer, their predic-
tions should be reduced after being detected in the latter layer.
Take the k-th input of the second layer for an example, the
loss function for rethinking is defined as follows:

L[1]
ret =

1

K

K∑
k=1

DKL

(
p
[2]
k || f [1]

focus(v
[1]
tk
)
)
, (4)

where f
[1]
focus(v

[1]
tk
) denotes the focusing prediction of tk-th

patch in the first layer It is worth noting that both the focusing
loss (Eq. 3) and the rethinking loss (Eq. 4) are applied to con-
strain the training of focusing predictors. Based on the model
gradient, the focusing loss achieves the fast constraint on all
patches. Differently, the rethinking loss is conducted based
on more precise information from crucial patches. With these
two losses, focusing predictors are trained to focus more pre-
cisely on suspected cancer regions.

Through forward training, SMT achieves the layer-by-
layer focus, but the reliability of cancer focusing is dependent
on the classification performance. Aiming at this problem, we
utilize the latter layers to guide their former layers on the clas-
sification task. Take the first two layers as an example. Each
image X [1]

n1 is inputted into V iT [1] for classification and fo-
cusing. The corresponding top-K patches with high focusing
predictions are denoted as {X 2

n2}Kn2=1 and used as input of
V iT [2]. The output embeddings of class tokens in these two
layers are denoted as V iT [1](X [1]

n1 ) and {V iT [2](X [2]
n2 )}Kn2=1,

respectively. The latter is the embedding of the most crucial
patches. Using it to constrain the first-layer embedding can
assist V iT [1] in extracting features from these regions. Take
the first layer as an example, the L1 loss is used to optimize
the embedding of class token and defined as:

f̄ [2]
n1

=
1

K

K∑
n2=1

V iT [2](X [2]
n2

), (5)

L[1]
emb = ∥V iT [1](X [1]

n1
)− f̄ [2]

n1
∥22, (6)

where f̄
[2]
n1 is the average embedding of class tokens in the

second layer and is used as the target of V iT [1](X [1]
n1 ). It is
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worth noting that L[1]
emb is only used to train the first layer. The

gradient of f̄
[2]
n1 is detached in this loss. Similar constraint

L[2]
emb is conducted from the third layer to the second one.

With the backward constraint, the embedding of class tokens
in former layers is guided on crucial feature.

In summary, the overall loss function for training ViTs
(LV ) and focusing predictors (LF ) can be derived as:

LV =
∑

l∈{1,2,3}

λ
[l]
fwdL

[l]
cls +

∑
l′∈{1,2}

λ
[l′]
bwdL

[l′]
emb,

LF =
∑

l∈{1,2}

λ
[l]
fwdL

[l]
focus +

∑
l′∈{1,2}

λ
[l′]
bwdL

[l′]
ret,

(7)

where λ[l]
fwd and λ

[l′]
bwd are loss weights for controlling the for-

ward and backward processes. The detailed settings are given
in Section B of supplementary materials. For the inference of
each slide, the final prediction will be determined based on
all focused patches of the third layer.

3.3 Weakly-Supervised Training Strategy
In some datasets, there are no extra annotations for tumor re-
gions. With only slide-level labels, our proposed SMT can
still achieve fast and accurate prediction. Since the labels of
the latter two layers can not be determined based on anno-
tations, they are set as the same as the first-layer label Y [1].
To guarantee the quality of pseudo labels, focusing predic-
tors are required to select positive patches with high preci-
sion. Through evaluation on datasets with annotations, we
find that our proposed focusing strategy can achieve over 80%
accuracy on positive slides. It indicates that the training data
of transformers in the latter two layers contains noise labels
with a small ratio of less than 20%. According to the def-
inition in Eq. (2), the patch with the lowest focusing score
S̃i1 will have a great influence on the prediction of negative
category. These patches are mainly benign regions, which is
further demonstrated in supplementary experiments. In each
layer, an additional patch with the lowest focusing score is
selected and magnified for training the next layer. Conse-
quently, the transformers in the latter two layers are further
trained by comparing positive samples with both intra-slide
and inter-slide negative samples. It is noted that the addi-
tional patch is only used to train the transformer of the next
layer, which will not be used for the subsequent focusing. So
that the acceleration of this strategy can also be guaranteed.

4 Experiments
4.1 Datasets and Implementation Details
To evaluate the performance of our proposed SMT on classi-
fication accuracy and inference speed, we use various patho-
logical datasets for diagnosis and prognosis tasks. The diag-
nosis datasets includes CAMELYON16 [Litjens et al., 2018],
PANDA [Bulten et al., 2022], and BRCA. The prognosis
datasets include LUAD and our collected HCC dataset. In
these datasets, CAMEL, PANDA, and HCC contain anno-
tations of tumor regions. PANDA is a grading dataset with
five categories. Based on the severity of the Gleason sys-
tem [Epstein, 2010], we also divide the grades in PANDA into

two categories and denote it as ‘PANDA-B’. More details are
given in Section A of supplementary materials.

In SMT, the encoders of three layers have the same archi-
tecture but do not share parameters. Each encoder is the vi-
sion transformer with 12 depth and 6 attention heads. We use
SGD for model training with the momentum of 0.9 and the
weight decay of 5 × 10−4. The initial learning rate is set to
0.002 for the former two layers and 0.01 for the last layer.
The batch size for the first layer is set to 4. The number of
focusing patches is set as K = 4, so that the actual batch
size for the latter layers are 16 and 64, respectively. SMT is
trained for 10 epochs on PANDA and 100 epochs on other
datasets. The training of the second and third layers are start
at 3-th and 5-th epoch on PANDA, which are 20-th and 50-th
epoch on other datasets. The weight of backward optimiza-
tion increases gradually from 0 to 1 in 5 epochs (PANDA)
and 20 epochs (other datasets). Slides of the above datasets
are scanned at 40×, which is also the inputted magnification
of the last layer. For PANDA, BRCA, and LUAD, input im-
ages are cropped into 64 patches in each layer of ViT. For
CAMELYON16 and HCC, input images are cropped into 256
patches in each layer of ViT. The patch size for all layers is
set to 256. The ϵ is set to 0.9. The loss weights λ

[l]
fwd and

λ
[l′]
bwd are gradually increased to 1 and 0.1. More details about

hyper-parameter settings are given in supplementary materi-
als. To the fair comparison of model efficiency, the inference
of all methods are run on a single NVIDIA A800.

4.2 Predictive Performance & Inference Efficiency
In this section, we compare the predictive performance and
inference efficiency of our proposed SMT with various exist-
ing methods, including NIC [Tellez et al., 2019], CLAM [Lu
et al., 2021], HIPT [Chen et al., 2022b], QuadTree [Jews-
bury et al., 2021], TransMIL [Shao et al., 2021] and Zoom-
MIL [Thandiackal et al., 2022]. The en- coders use pa-
rameters pretrained on ImageNet. The traditional method of
cropping patches are used as ‘Baseline’, which uses ResNet-
18 [He et al., 2016] as the backbone. Our proposed SMT is
evaluated with different numbers of focused patches.

From the classification results in Table 1, CLAM and HIPT
achieve great performance on pathological diagnosis and
prognosis. Especially, HIPT achieves the highest accuracy on
three datasets, which mainly due to the sufficient features ex-
tracted by its hierarchical structure. However, from the infer-
ence time, HIPT takes hundreds of seconds for the inference
of each slide. QuadTree and MIL-based methods are faster
by selecting partial regions in WSIs, but the acceleration is
still limited. It is noted that all the results of inference time
include data processing and model prediction for each slide.
Although TransMIL and ZoomMIL take only a few seconds
in model prediction, they rely on massive pre-processing to
extract embeddings of all patches, which requires hundreds
of seconds. As a result, the inference of each slide with
both TransMIL and ZoomMIL is actually time-consuming. In
SMT, the focusing strategy achieves fast and accurate predic-
tion on all pathological datasets. It takes only 2.17s ∼ 5.65s
for the inference of each WSI. Except the PANDA with small-
sized slides, SMT achieves an average acceleration of 162.25
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Dataset Baseline NIC CLAM HIPT QuadTree TransMIL ZoomMIL SMT (ours)

CAMELYON16
Acc. 77.49±1.27 80.83±0.81 83.16±0.94 85.57±0.86 84.60±1.05 85.19±0.82 84.42±1.33 84.81±0.85

Time 692.32 2118.26 113.98 335.74 71.35 453.86 428.19 3.09

PANDA
Acc. 73.76±2.06 78.19±1.16 80.80±2.71 80.69±1.07 76.60±3.23 80.92±1.96 81.38±1.28 79.19±1.97

Time 10.79 51.86 3.71 8.93 2.95 9.02 7.58 2.26
PANDA-B Acc. 86.60±1.02 90.76±0.84 93.15±1.35 92.71±1.01 92.08±1.74 90.97±1.45 92.57±0.92 92.89±0.63

BRCA
Acc. 81.15±1.77 84.02±1.30 85.82±1.80 87.26±0.93 84.37±2.25 85.46±0.71 86.10±0.95 85.94±0.84

Time 701.42 1968.46 115.43 362.50 80.50 524.91 505.20 2.17

LUAD
Acc. 73.58±2.15 73.17±1.48 78.99±1.72 80.46±1.34 76.93±1.97 79.95±1.88 78.68±1.18 79.10±1.21

Time 578.63 1217.31 99.03 179.75 50.76 407.10 316.56 2.84

HCC
Acc. 81.09±2.37 85.11±1.85 87.83±2.02 87.03±1.53 86.25±2.17 85.86±2.01 87.59±1.99 86.24±1.20

Time 1335.19 3504.32 257.15 584.42 101.54 847.38 757.79 5.65

Table 1: Performance of prediction accuracy and inference time on various pathological datasets for diagnosis and prognosis. Experiments are
conducted to compare our proposed SMT with existing methods, including NIC [Tellez et al., 2019], CLAM [Lu et al., 2021], HIPT [Chen et
al., 2022b], QuadTree [Jewsbury et al., 2021], TransMIL [Shao et al., 2021] and ZoomMIL [Thandiackal et al., 2022]. Our proposed SMT
applies 8 focused patches for each layer in these experiments. The balanced slide-level accuracy(%) and time(s) for each dataset is shown.
The inference time for each slide includes pre-processing and prediction. The fastest results are marked in bold.

Figure 3: Ablation study in terms of test accuracy (%) and inference
time (s) with different number of focused patches (K).

times among other datasets. Even Compared to SOTA meth-
ods, SMT still achieves comparable prediction performance
and huge acceleration. And the gap between SMT and opti-
mal performance is only 0.26% ∼ 2.19%, demonstrating that
the acceleration of SMT does not sacrifice performance.

Moreover, existing methods require to crop numerous
patches from each WSI and extract embeddings, leading to a
huge storage burden. For the inference stage of SMT, only a
few patches of each WSI are required. According to the statis-
tics shown in Table S2 of supplementary materials, SMT only
takes less than 1% space for storing thumbnails of WSIs.

4.3 Ablation Study
The effect of SMT components are further evaluated, includ-
ing ablation study on the focused number, focusing strategy,
backward optimization, and the performance of three layers.

To explore the effect of different number of focused
patches, experiments with various K values are conducted
and shown in Figure 3. For datasets CAMELYON16 and
HCC, SMT achieves high accuracy with only 4 ∼ 8 focused

Dataset
CAMELYON16 HCC

Acc. AUC Acc. AUC

Forward (focus by score s) 81.69 82.73 83.41 80.58

Forward (focus by prediction q) 81.77 86.05 83.84 81.29

Forward (focus by attention) 68.33 70.05 73.07 76.37

Forward + Lret 84.50 87.18 85.98 87.93

Forward + Lemb 83.97 86.01 84.64 84.55

Forward + Backward 84.81 87.86 86.24 88.15

Table 2: Ablation study results in terms of test accuracy and AUC.
Experiments are conducted on pathological datasets of diagnosis
(CAMELYON16) and prognosis (HCC). Results (%) with the best
performance are marked in bold.

patches, but the accuracy can not be significantly improved
by further increasing the K value. It indicates that only a
few critical regions are enough for pathological diagnosis,
and most other regions are inessential or repetitive. For the
grading dataset PANDA, the task is more challenging and re-
quire more information. Therefore the K value for accurate
diagnosis is improved to 12.

The ablation study on each component is shown in Table 2.
With only forward training, we compare the focusing strate-
gies based on the score s, the prediction q, and the attention
value. The focusing score is calculated based on the model
gradient. Since it is untrainable, the focusing precision is
limited, resulting in poor performance of the final diagnosis.
The attention value is calculated across the ViT, which is also
untrainable. More importantly, it reflects the correlation be-
tween inputted patches and the class token, which can cause
wrong focusing results on negative samples. Differently, the
focusing predictor can be trained to extract information from
the patch embedding. Since the predictor training is trained
by s with only forward training, its performance is similar
to that of focusing by scores. But with backward rethinking
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Figure 4: Visualization of the focusing results on positive (A) and negative (B) slides from the test sets of PANDA and CAMELYON16. The
annotated positive patches are colored in blue. Patches with high focusing predictions are marked in red (top-1) and yellow (top-2 ∼ 4), and
the top-1 patch is magnified. The predicted value for the correct category is shown below each positive/negative patch.

(Forward + Lret), the focusing predictor can improve perfor-
mance through both forward and backward optimization.

In addition, the focusing precision also relies on the clas-
sification performance. The final performance is further im-
proved by combining forward training and embedding loss
(Forward + Lemb). Even though Lemb is used to optimize
the former layers, the representative learning also promotes
the model to extract better features for precise focusing. With
both forward and backward training, the classification and fo-
cusing are further improved, achieving great performance in
both diagnosis and prognosis tasks. Besides, these losses do
not contain extensive additional calculations in training, and
the backward process is not used in the inference stage. So
these strategies can achieve better model training without af-
fecting the inference speed. That is how SMT achieves fast
and accurate pathological diagnosis.

More ablation study is conducted in Section C of supple-
mentary materials, including the experiments with different
hyper-parameters, the time consumption with different values
of K, the performance of three layers during training.

4.4 Focusing Visualization
The performance of focusing predictors is evaluated by visu-
alizing the focusing results. This section selects positive and
negative samples in PANDA and CAMELYON16. In Fig-
ure 4, the focusing predictions on all patches of the former
two layers are shown. Patches with top-1 and top-2 ∼ 4 fo-
cusing scores are highlighted in red and yellow, respectively.
And the top-1 patch predicted to be most worthy to focus on
is selected and visualized in the next layer.

In positive samples, most patches with high focusing pre-
dictions are consistent with cancer regions. Through SMT,
these crucial regions are focused layer by layer, and each slide
is accurately predicted on these patches. Without wasting
time on inessential regions, our proposed SMT can achieve
efficient predictions on pathological images.

For negative samples, SMT will still predict the signifi-
cance of focusing on all the patches. Even though the image
does not contain any cancer regions, patches that are most
likely to have cancer will be selected for further confirmation.
This strategy of SMT avoids the poor performance caused by
inaccurate prediction of previous layers on thumbnails. For
example, although the first layer misdiagnoses the first nega-

tive sample, the focusing predictor locates suspicious patches
for further confirmation. With abundant features of magnified
images, the last layer can make more accurate classification
on samples that were wrongly predicted by former layers.

5 Discussion and Limitation
The SMT achieves acceleration by only focusing on crucial
regions, but this strategy is highly dependent on the focusing
precision, which will be affected by difficult tasks. In Fig-
ure 4, We find that some epithelioid cells are wrongly focused
since they are similar to cancerous cells in morphology. Sim-
ilarly, due to the relatively low focusing precision for grading
tasks in PANDA, SMT achieves lower performance compared
with SOTA methods. The results in Table S1 of supplemen-
tary materials shows that the performance can be improved
with a larger K, and it is still faster than all existing methods.
In summary, there is still a trade-off between focusing pre-
cision and speed, and a better focusing strategy will achieve
further improvement for pathological images in the future.

6 Conclusion
This paper proposes the Self-reform Multilayer Transformer
(SMT) to solve the extremely time and space consuming
problem of pathological image diagnosis and prognosis. The
forward focusing of SMT conducts layer-by-layer focus on
critical regions from large scale to small scale. And the
backward rethinking strategy optimizes former layers train-
ing with more detailed features. Through the iterative in-
teractions of this cyclic process, the proposed SMT can
achieve fast and accurate classification on various pathologi-
cal datasets. Compared with existing methods, the SMT dras-
tically reduces the inference of each gigapixel slide to only
2.17 ∼ 5.65 seconds without additional storage, achieving an
average acceleration of 162.25 times with comparable perfor-
mance. Moreover, the ablation study found that only 4 ∼ 8
high-response patches of each layer are required to enable
SMT to achieve high accuracy in most datasets, while fur-
ther increasing the patch number does not yield significant
benefits. The conclusion of this paper indicates that the omis-
sion of inessential or repetitive regions can improve efficiency
while guaranteeing high accuracy, which can provide a new
perspective for future task on pathological images.
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