
A Top-Down Tree Model Counter for Quantified Boolean Formulas

Florent Capelli1 , Jean-Marie Lagniez1 , Andreas Plank2 and Martina Seidl2
1Univ. Artois, CNRS, Centre de Recherche en Informatique de Lens (CRIL), F-62300 Lens, France

2Institute for Symbolic Artificial Intelligence, JKU Linz, Austria
{capelli, lagniez}@cril.fr, {andreas.plank, martina.seidl}@jku.at

Abstract
This paper addresses the challenge of solution
counting for Quantified Boolean Formulas (QBFs),
a task distinct from the well-established model
counting problem for SAT (#SAT). Unlike SAT,
where models are straightforward assignments to
Boolean variables, QBF solution counting involves
tree models that capture dependencies among vari-
ables within different quantifier blocks. We present
a comprehensive top-down tree model counter ca-
pable of handling diverse satisfiable QBFs. High-
lighting the pivotal role of the branching heuristic,
which needs to consider variables in accordance
with quantification blocks, we further underscore
the significance of dealing with connected com-
ponents, free variables, and caching. Experimen-
tal results indicate that our proposed approach for
counting tree models of QBF formulas is highly ef-
ficient in practice, surpassing existing state-of-the-
art methods designed for this specific purpose.

1 Introduction
Problems of the polynomial hierarchy [Stockmeyer, 1976]
emerge in a wide range of applications from artificial intel-
ligence, including reasoning tasks in planning, argumenta-
tion, two-player games, formal verification, and synthesis to
name a few examples. To handle such problems in a uniform
manner, quantified Boolean formulas (QBFs) offer an appeal-
ing framework [Shukla et al., 2019] with advanced theory
and practice of solving technology [Beyersdorff et al., 2021;
Kleine Büning and Bubeck, 2021; Giunchiglia et al., 2021].

QBFs, extending propositional logic (SAT) by introducing
quantifiers over Boolean variables, exhibit notable similari-
ties with SAT. However, the incorporation of universal quan-
tifiers introduces fundamental distinctions. Unlike SAT, a so-
lution to a true QBF is not merely an assignment ensuring
the formula’s satisfiability. Instead, it takes the form of a
tree structure, delineating, for all combinations of universal
variable assignments, how existential variables must be set to
make the formula evaluate to true. This inherent complexity
renders the evaluation of QBFs more intricate compared to
SAT. Example 1 provides a concrete illustration of this tree
structure.

a

x1

x2

y1

y2

⊤

y1

y2

⊤

x2

y1

y2

⊤

y1

y2

⊤

?

0

0

?

?

1

?

?

1

0

?

?

1

?

?

a

x1

x2

y1

y2

⊤

y1

y2

⊤

x2

y1

y2

⊤

y1

y2

⊤

1

0

0

1

1

1

1

1

1

0

1

1

1

1

1

Figure 1: Tree model structure (left) and concrete model of QBF (1)

Example 1. Consider the QBF Φ given by:

∃a∀x1x2∃y1y2.(¬a ∨ x1 ∨ y1) ∧ (¬a ∨ x2 ∨ y2) (1)
∧ (a ∨ x2 ∨ y2)

This formula has tree models of the structure as shown on the
left of Figure 1. On the right, we see a concrete instance of a
tree model with concrete values for the existential variables.

The task of a QBF solver is to determine values for the
existential variables in a way that each path of the tree en-
compasses an assignment satisfying the propositional part of
the QBF or to demonstrate that no such assignment exists.
In the case of the previous example, there exist 80 distinct
tree models, signifying that Φ has 80 solutions. These tree
models encapsulate crucial information pertaining to the so-
lution of the original reasoning task, such as the plan of a
planning problem, an error trace in a verification problem, or
the synthesized program in formal synthesis. Consequently,
extensive research has been conducted on extracting solutions
from QBF solvers [Balabanov and Jiang, 2012; Balabanov et
al., 2015; Beyersdorff et al., 2014; Goultiaeva et al., 2011;
Chew and Slivovsky, 2022].

In contrast to the extensive exploration of extracting and
analyzing solutions in QBFs, the problem of counting the
number of solutions, also known as #QBF, has predominantly
received theoretical attention [Ladner, 1989; Hemaspaandra
and Vollmer, 1995; Bauland et al., 2005]. Some work has
delved into counting solutions for QBFs within specific con-
straints. For instance, in [Shukla et al., 2022], an approach
to counting solutions at the outer level was introduced, focus-
ing on a true QBF with the first quantifier block ∃X being

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1853

existentially quantified. This method enumerates the num-
ber of Boolean assignments to variables in X that render
the QBF true [Birnbaum and Lozinskii, 1999; Dubois, 1991;
Becker et al., 2012]. The enumerative strategy has been ex-
tended to the second level, enabling the counting of solutions
for true QBFs in the form of ∀X∃Y [Plank et al., 2023]. To
achieve this, Skolem functions representing tree models as
circuits are incorporated into the formula until the formula
evaluates to false. An approximate approach in the related
field of Boolean function synthesis will be presented in [Shaw
et al., 2024]. However, as of now, there is no approach avail-
able that can count solutions for arbitrary QBFs.

It is crucial to distinguish #QBF from classical counting
tasks like #SAT, projected model counting [Aziz et al., 2015],
(weighted) Max#SAT [Fremont et al., 2017; Audemard et al.,
2022], E-MajSAT [Littman et al., 1998], and the stochastic
satisfiability (SSAT) [Majercik, 2009] problems. This dis-
tinction is notable in the choice of semi-ring for aggregating
sub-counts, and the special considerations required for han-
dling connected components, caching, and free variables.

Contributions The principal contribution of this work lies
in the development of what, to the best of our knowledge, is
the first QBF model counter capable of addressing the count-
ing problem for formulas with arbitrary quantifier prefixes.
To this end, we lay the groundwork by establishing the re-
quired theoretical foundations and present an efficient im-
plementation. Notably, our approach outperforms existing
methods tailored for QBFs with just one quantifier alternation
(2QBFs). Through empirical demonstrations, we showcase
the prowess of our approach in determining solution counts
for instances from diverse formula families, even those con-
sidered challenging for contemporary QBF solvers.

2 Preliminaries
We consider quantified Boolean formulas in the form Π.ϕ,
where Π = Q1X1 . . . QnXn is referred to as the quanti-
fier prefix (with Qi ∈ {∀, ∃} and Qi ̸= Qi+1 for i ∈
{1, . . . , n − 1}, and X1, . . . , Xn are pairwise disjoint, non-
empty sets of Boolean variables). We denote by Π∃

Y the
quantifier prefix derived from Π by removing existentially
quantified variables that do not belong to Y . For instance, if
Π = ∀x1x2∃y1y2∀z1z2∃y3, then Π∃

{y1} = ∀x1x2∃y1∀z1z2.
Additionally, we use the notation Π \ {x} to represent the
quantifier prefix Π with the variable x removed. In the previ-
ous example, Π \ {x2} = ∀x1∃y1y2∀z1z2∃y3.

The matrix ϕ is a propositional formula in conjunctive nor-
mal form (CNF) over variables Xi. The set Var(ϕ) repre-
sents the variables occurring in ϕ. A CNF consists of a con-
junction of clauses. Each clause is a disjunction of literals. A
literal ℓ is a variable x or the negation ¬x of a variable x. If ℓ
is a literal, then Var(ℓ) = x if ℓ = x or ℓ = ¬x. Additionally,
ℓ̄ is defined as x if ℓ = ¬x and ℓ̄ = ¬x otherwise.

An assignment µ of ϕ is a set of literals over (a subset of)
Var(ϕ) such that there is no ℓ ∈ µ with ℓ̄ ∈ µ. For an assign-
ment µ, Var(µ) = {Var(ℓ) | ℓ ∈ µ}. If Var(µ) = Var(ϕ),
then µ is a full assignment, else it is a partial assignment.
By 2X we denote the set of all possible assignments to vari-
ables in X . Given a propositional formula ϕ and an assign-

Algorithm 1: d4-QBF
input : Φ = Π.ϕ: a QBF formula.
output: the number of tree models of Φ.

1 if ϕ is unsat then return 0;
2 (ϕ′, µ)← BCP(ϕ);
3 if ∃Qi ∈ Π s.t. Qi = ∀ ∧Xi ∩Var(µ) ̸= ∅ then

return 0;
4 if ϕ′ is valid then return CountReduct(Π, ∅, 1);
5 Π′ ← Shrink(Π,Var(ϕ′));
6 if cache[ϕ′] ̸= ∅ then return

CountReduct(Π,Π′, ϕ′);
7 c← 1;
8 γ ← ConnectedComponent(ϕ′);
9 if |γ| > 1 then

10 for ϕ′′ ∈ γ do
11 c← c× d4-QBF(Π′∃

Var(ϕ′′).ϕ
′′);

12 else
13 v ← selectVar(X ′

1);
14 c1 ← d4-QBF(Π′ \ {v}.ϕ′|v);
15 c2 ← d4-QBF(Π′ \ {v}.ϕ′|¬v);
16 c← (Q′

1 = ∀)?c1 × c2 : c1 + c2;

17 cache[ϕ′]← c;
18 return CountReduct(Π,Π′, c);

ment µ, then ϕ|µ denotes the formula obtained when setting
all literals x ∈ µ to true and all literals ¬x ∈ µ to false,
respectively. For setting a single variable x to true (resp. to
false) in a CNF ϕ, we write ϕ|x (resp. ϕ|¬x). A QBF ∃xΠ.ϕ
is true iff Π.ϕ|x or Π.ϕ|¬x is true. A QBF ∀xΠ.ϕ is true iff
Π.ϕ|x and Π.ϕ|¬x are true. Because of this semantics, a pre-
fix Π = Q1X1 . . . QnXn of QBF Π.ϕ induces an ordering on
the variables: xi <Π xj if xi ∈ Xi, xj ∈ Xj and i < j.

A model for a QBF Φ = Π.ϕ with |Var(Φ)| = m is a tree
of height m+1 such that every node at level k ∈ {1, . . . ,m}
is labeled with a variable xk in the order of the prefix, i.e.,
if variable xj is at level j and variable xk is at level k with
j ≤ k then xj ≤Π xk. The order of the variables from the
same quantifier blockX can be chosen in an arbitrary manner.
We consider two tree models that only differ in the order of
variables from the same quantifier block as equal. A node
at level k has one child if xk ∈ Xi with Qi = ∃, and two
children if xk ∈ Xi with Qi = ∀. We denote the number of
different QBF models of a QBF Φ by #(Φ). For instance, for
QBF Φ from Example 1, we observe that #(Φ) = 80.

3 A Top-Down QBF Counter
3.1 Algorithm
Below, we present our algorithm, referred to as d4-QBF,
aimed at computing the count of tree models for a given QBF.
The algorithm is depicted in Algorithm 1. Specifically, it
commences by evaluating several base cases (lines 1–6). Ini-
tially, it checks if the formula ϕ, the matrix of the QBF Φ, is
unsatisfiable by invoking a SAT solver. If the formula is un-
satisfiable, then the number of tree models is 0, and the func-
tion returns this value (Line 1). Subsequently, the algorithm

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1854

computes the formula resulting from the Boolean constraint
propagation (BCP) procedure by setting literals in clauses of
size one to true. The results of BCP are stored in ϕ′ and µ.
Here, ϕ′ represents the formula obtained after simplification,
and µ signifies the set of unit literals (line 2). Importantly,
Var(ϕ′)∩Var(µ) = ∅, and ϕ ≡ ϕ′ ∧ µ. This transformation
does not change the number of tree models, which is an easy
consequence of the definition of tree models:

Lemma 1. Let ϕ and ψ be two CNFs on variables X that
have the same satisfying assignments over X and let Π be a
quantifier prefix s.t. Var(Π) = X . Then #(Π.ϕ) = #(Π.ψ).

If a QBF contains a unit clause with a universal literal, then
the QBF is false. Hence, if µ contains a universal literal,
the QBF Φ is false, and the function returns 0 (line 3). If
ϕ′ is valid, the algorithm computes the number of tree mod-
els for Φ directly from Π. This is done using a subroutine
CacheReduct whose correctness is proven in Corollary 1.

Finally, the algorithm checks whether ϕ′, obtained at line 2,
has been previously computed by inspecting the cache struc-
ture. Notably, cache is a global variable consisting of a hash
map associating formulas with natural numbers. However,
one has to be careful as it is possible that the same formula
is computed twice with different prefixes, inducing different
model count. To ensure cache consistency, we define in Sec-
tion 3.4 a notion of canonical prefix obtained using function
Shrink. Inuitively, Shrink removes existential variables that
are not in Var(ϕ′) and some universal quantified variables
as long as they remain on the first quantification block. We
give more details in Section 3.4 where we are able to prove
that whenever a cache hit occurs, then cache[ϕ′] contains the
value #(Π′.ϕ′) where Π′ is obtained from Π using Shrink.
The function CountReduct then recovers #(Π.ϕ′) from this
value. Its correctness is proven in Lemma 3.

After addressing all base cases, the algorithm proceeds to
the recursive case. The variable c, designated for storing the
model count, is initialized to 1 (line 7). Subsequently, the
connected components of ϕ are computed in γ utilizing the
ConnectedComponent function applied to ϕ′. This function
yields syntactically disjoint sub-formulas of ϕ′ (line 8). As
emphasized in Subsection 3.3, this step plays a pivotal role
in decomposing the formula’s complexity, thereby enhancing
the efficiency of the tree model count computation.

Then, once the connected component γ has been com-
puted, we consider two cases based on the size of γ. If |γ|
is greater than 1 (line 9), Proposition 1 becomes instrumen-
tal. It allows us to compute the tree model count for each
sub-formula independently by invoking d4-QBF recursively
and then multiplying the results (lines 10–11). To effectively
leverage Proposition 1, we adjust the quantifier prefix to in-
clude only the existentially quantified variables that are nec-
essary (i.e. Π′∃

Var(ϕ′), see Subsection 3.3 for more details).
In the scenario where the formula contains only one con-

nected component, a decision variable v is chosen (line 13)
among the variables of the first quantifier block using the
selectVar function. Subsequently, two recursive calls to
d4-QBF are made, corresponding to the two ways of con-
ditioning v in Π′.ϕ′ (lines 14–15). As elucidated in Theo-
rem 1 (refer to Subsection 3.2 for a detailed explanation of

the branching strategy), the synthesis of results involves mul-
tiplication when the variable v is universally quantified and
addition when v is existentially quantified (see line 16).

Finally, the cache is updated with the computed count as-
sociated with Π′.ϕ′ (line 17). Since the quantification order
remains constant throughout the search, using ϕ′ as the key
instead of Π′.ϕ′ suffices as this QBF lacks free variables. The
correctness of this approach is proven in Section 3.4. Once
ϕ′ is added to the cache, the CountReduct function can be
invoked to obtain the correct tree model count (line 18).

3.2 Branching Strategy
Our algorithm operates recursively by progressing through
variable branching in the formula and evaluating the result-
ing sub-formula. As emphasized earlier, accurate counting of
tree models requires adherence to the order of variables out-
lined by the quantifier prefix. In addition to this requirement,
it is crucial to compute the precise number of tree models by
appropriately aggregating the sub-counts obtained. The sub-
sequent theorem illustrates the method for recombining sub-
counts based on the type of quantifier used for branching.
Theorem 1. Let Φ = Qx.Ψ. Then #(Φ) = #(Ψ|x) ×
#(Ψ|¬x) ifQ = ∀ and #(Φ) = #(Ψ|x)+#(Ψ|¬x) ifQ = ∃.

Proof. First assume that Q = ∀. By definition, the models
of Φ are the set of trees whose root is labeled by x and is
connected to two subtrees T0 and T1 such that T0 is a model of
Ψ|¬x and T1 is a model of Ψ|x. There are obviously #(Ψ|x)×
#(Ψ|¬x) such trees hence #(Φ) = #(Ψ|x)×#(Ψ|¬x).

Now assume Q = ∃. By definition, the models of Φ are
the set of trees whose root r is labeled by x. Further, its root
r is connected to a subtree T with root r′ such that: if the
edge (r, r′) is labeled by 0 then T is a model of Ψ|¬x and
if it is labeled by 1 then T is a model of Ψ|x. Hence, there
are #(Ψ|¬x) models of Φ such that (r, r′) is labeled by 0 and
#(Ψ|x) models of Φ such that (r, r′) is labeled by 1. These
models are obviously disjoint since they have a different label
for the edge (r, r′). Hence #(Φ) = #(Ψ|x) +#(Ψ|¬x).

Example 2 (Example 1 cont’d). Let us analyze the QBF
Φ in Example 1. We decompose #(Φ) into the sum of
counts for #(Φ|a) and #(Φ|¬a). QBF Φ|a is defined as
∀x1x2∃y1y2.(x1 ∨ y1) ∧ (x2 ∨ y2), while Φ|¬a is defined as
∀x1x2∃y1y2.(x2∨y2). Branching on the variable x2 in Φ|¬a

results in #(Φ|¬a) = #((Φ|¬a)|x2
) × #((Φ|¬a)|¬x2

). As
#((Φ|¬a)|x2

) = #(∀x1∃y1y2.⊤) = 16 (refer to Example 5
for details) and #((Φ|¬a)|¬x2

) = #(∀x1∃y1.⊤) = 4, we ob-
tain #(Φ|¬a) = 64. Later, in Example 3, we will demonstrate
that #(Φ|a) = 16. Notably, we observe that the correct tree
model count is achieved, totaling 16 + (4× 16) = 80.

If Φ = QX.Ψ, the order of the variables in X can be rear-
ranged without affecting the model count for Φ. Thus, Theo-
rem 1 holds for any variable x ∈ X . This property is utilized
by the selectVar heuristic on Line 13 in Algorithm 1. In
practice, we employ the same heuristics as cachet [Sang et
al., 2004], i.e VSADS [Sang et al., 2005], striving to partition
the formula’s matrix into connected components for leverag-
ing Proposition 1.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1855

3.3 Connected Components
This optimization is a generalization exploited in many top-
down model counters, such as D4 [Lagniez and Marquis,
2019]: decomposability. At its core, decomposability is a
property of a CNF formula. A CNF formula ϕ(X) over vari-
ables X is deemed decomposable if there exists a partition
X1, . . . , Xk of X such that ϕ(X) = ϕ1(X1)∧ · · · ∧ϕk(Xk).
In this case, it is evident that #(ϕ) =

∏k
i=1 #(ϕi). Extend-

ing this property, we generalize it to estimate the number of
models of QBF whose matrix is decomposable:
Proposition 1. Let Φ be a QBF of the form
∀X1∃Y1 . . . ∀Xk∃Yk.ϕ1 ∧ ϕ2 such that X =

⊎k
i=1Xi,

Y =
⊎k

i=1 Yi and Var(ϕ1) ∩ Var(ϕ2) ⊆ X . We define
Y 1
i = Yi ∩Var(ϕ1) and Y 2

i = Yi ∩Var(ϕ2). Then #(Φ) =
#(Φ1) × #(Φ2) where Φ1 = ∀X1∃Y 1

1 . . . ∀Xk∃Y 1
k .ϕ1 and

Φ2 = ∀X1∃Y 2
1 . . . ∀Xk∃Y 2

k .ϕ2.

Proof. The proof is by induction on the number k of blocks
of universal quantifiers. First, assume that k = 0, that is,
there is no block of universal quantifiers. In other words,
Φ = ∃Y.ϕ1 ∧ ϕ2. In this case, #(Φ) is the number of models
of ϕ1 ∧ ϕ2 which is equal by definition to the propositional
model count #SAT (ϕ1 ∧ ϕ2), which, by what precedes, is
equal to #SAT (ϕ1) × #SAT (ϕ2). But again by defini-
tion, #SAT (ϕi) = #(Φi) for i ∈ {1, 2}. Hence #(Φ) =
#(Φ1)×#(Φ2) which establishes the base case of the induc-
tion. Now assume Φ = ∀X1∃Y1 . . . ∀Xk+1∃Yk+1.ϕ1 ∧ ϕ2.
By recursively applying Theorem 1, we have:

#Φ =
∏

A1∈2X1

∑
E1∈2Y1

#Φ|A1,E1
.

Now, observe that for every A1 ∈ 2X1 and E1 ∈ 2Y1 :
Φ|A1,E1

= ∀X2∃Y2 . . . ∀Xk+1∃Yk+1.ϕ1 |A1,E1
∧ ϕ2 |A1,E1

= ∀X2∃Y2 . . . ∀Xk+1∃Yk+1.ϕ1 |A1,E1
1
∧ ϕ2 |A1,E2

1

where E1
1 (resp. E2

1) is defined as E1 restricted to
variables in Y 1

1 (resp. Y 2
1). For a QBF Φ with

fewer than k universal quantifier blocks, by induction,
we have #(Φ|A1,E1

) = #(Ψ1) × #(Ψ2), where
Ψi = ∀X2∃Y i

2 . . . ∀Xk+1∃Y i
k+1.ϕi |A1,Ei

1
. Note that

Ψi = Φi|A1,Ei
1
. Thus, #(Φ|A1,E1

) = #(Φ1 |A1,E1
1
) ×

#(Φ2 |A1,Ep2
1
). It follows that #(Φ) =∏

A1∈2X1

∑
E1

1∈2
Y 1
1

∑
E2

1∈2
Y 2
1

#(Φ|A1,E1
)

=
∏

A1∈2X1

∑
E1

1∈2
Y 1
1

∑
E2

1∈2
Y 2
1

#(Φ1 |A1,E
1
1
)×#(Φ2 |A1,E

2
1
)

=
∏

A1∈2X1

(∑
E1

1∈2
Y 1
1

#(Φ1 |A1,E
1
1
)
)
×

(∑
E2

1∈2
Y 2
1

#(Φ2 |A1,E
2
1
)
)

=
(∏
A1∈2X1

∑
E1

1∈2
Y 1
1

#(Φ1 |A1,E
1
1
)
)
×

(∏
A1∈2X1

∑
E2

1∈2
Y 2
1

#(Φ2 |A1,E
2
1
)
)
= #(Φ1)×#(Φ2).

Example 3 (Example 1 cont’d). Let us reevaluate the for-
mula Φ from Example 1, with a specific focus on the formula
Φ|a = ∀x1x2∃y1y2.(x1 ∨ y1) ∧ (x2 ∨ y2) highlighted in
Example 2. Notably, this formula comprises two connected
components: x1 ∨ y1 and x2 ∨ y2. Applying Proposition 1,
we determine that #(Φ|a) = #(∀x1x2∃y1.(x1 ∨ y1)) ×
#(∀x1x2∃y2.(x2 ∨ y2)) = 4× 4 = 16.

3.4 Counting Tree Models from Cache
Caching plays a crucial role in cutting-edge model counters
[Sang et al., 2004; Lagniez and Marquis, 2021; van Bremen
et al., 2021; Bart et al., 2014]. To achieve optimal efficiency,
it is essential to incorporate the most pertinent information
into the cache structure, thereby maximizing positive hits and
minimizing the computational effort to retrieve the tree model
count (the cost associated with searching in the hash table).

In propositional model counting considering the matrix
alone suffices (due to all variables being existentially quan-
tified). Determining the correct tree model count necessitates
considering both the matrix and the quantifier prefix. How-
ever, using the quantifier prefix along with the matrix as the
key when adding items to the cache could be suboptimal, po-
tentially resulting in an artificial increase in negative hits.

Indeed, a naive caching strategy would involve storing the
tree model count for every formula Ψ solved so far by our
algorithm. A more effective strategy is employed, improving
the number of cache hits by storing only the model count of
a reduced QBF. To illustrate, assume a recursive call is made
to count the number of models of Ψ1 = ∀X0∃y∃Z∀x1.ϕ
for some CNF formula ϕ that does not depend on variables
Z. Assume that a previous recursive call has determined that
Ψ0 = ∀X0∃y∀x1.ϕ has N models. A naive caching strategy
might overlook the knowledge that #(Ψ0) = N since Ψ1 ̸=
Ψ0. However, it can be observed that #(Ψ1) = 22

|X0|·|Z|N .
This observation can be generalized as follows: Given a

prefix Π = Q1x1 . . . Qkxk, a subprefix Π′ is a prefix of
the form Qi1xi1 . . . Qipxip with i1 < · · · < ip. That
is, Π′ is obtained from Π by removing quantified variables
but keeping the order. If Π′ is a subprefix of Π and Y ⊆
Var(Π) \ Var(Π′), we denote by Π′ + Y the subprefix ob-
tained by adding again the Y variables in Π, keeping the same
order as Π. A prefix Π′ is said to be a reduction of Π if the
following hold: let y be the first existentially quantified vari-
able of Π′. Then every universal variable x that appears after
y in Π also appears in Π′. This notion is interesting because
of the following lemma:

Lemma 2. Let Π′ be a reduction of Π such that Var(ϕ) ⊆
Var(Π′) and let x be the last variable (for the order induced
by Π) of Var(Π) \ Var(Π′). Then Π′′ = Π′ + x is a reduc-
tion of Π and #(Π′′.ϕ) = (#(Π′.ϕ))2 if x is universal and
#(Π′′.ϕ) = 22

p

#(Π′.ϕ) if x is existential and if there are p
universal variables before x in Π′.

Proof. We first show that Π′′ is a reduction of Π. By defini-
tion, Π′′ is a subprefix of Π. Now if x is universally quantified
then by definition, there is no existentially quantified variable
before x in Π′ since Π′ is a reduction. Hence Π′′ is a reduc-
tion. Now assume x is existentially quantified. Let y be the

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1856

first existentially quantified variable of Π′. If x appears after
y then y is still the first existentially quantified variable of Π′

and hence since Π′ is a reduction, every universal variable of
Π that comes after y are in Π′ hence in Π′′ too hence Π′′ is
a reduction. If x comes before y, we have to show that ev-
ery universal variables of Π that are after x are in Π′′. Since
by definition we choose x to be the last variable of Π \ Π′,
every variable of Π appearing after x are also in Π′′, hence
universal variables too. So Π′′ is a reduction.

Now assume that x is universal. Since Π′′ is a reduc-
tion, no existential variable of Π can appear before x in Π′′.
Hence we can apply theorem 1 on x to find that #(Π′′.ϕ) =
(#(Π′.ϕ|x))(#(Π′.ϕ|¬x)). But Var(ϕ) ⊆ Var(Π′), hence
x /∈ Var(ϕ). In other words, ϕ|x = ϕ|¬x = ϕ. Hence
#(Π′′.ϕ) = (#(Π′.ϕ))2.

Finally, assume x is existential. Since x /∈ Var(ϕ),
ϕ is logically equivalent to ϕ ∧ (x ∨ ¬x). By Proposi-
tion 1, #(Π′′.ϕ) = #(Π′.ϕ) × #(∀X1∃x∀X2.⊤) where
X1 are the universal variables of Π′′ before ∃x and X2 the
universal variables after ∃x. An easy induction show that
#(∀X1∃x∀X2.⊤) = 22

|X1|
which concludes the proof.

Applying Lemma 2 iteratively on a reduction Π′ of Π un-
til the prefix are the same leads to an efficient algorithm to
compute #(Π.ϕ) knowing #(Π′.ϕ). The pseudocode for
this approach is given in Algorithm 2. We start by collect-
ing Var(Π) \ Var(Π′) in the for-loop line 2. We maintain
a counter p which is the number of universal quantifier in Π′

preceding the current examined variable. We only increase p
if the quantifier is universal and if the variables appears in Π′.
Each time a variable not in Π′ is found, we add its quantifier
to L together with the number of preceding universal quan-
tifiers. We then go over the list L in reverse order on line
4 and apply the transformation from Lemma 2 to transform
#(Π′.ϕ) into #(Π.ϕ). We hence have the following lemma:

Lemma 3. Let Π be a quantifier prefix, Π′ a reduction of Π
and ϕ a CNF formula such that Var(ϕ) ⊆ Var(Π′). Then Al-
gorithm 2 on parameters (Π,Π′,#(Π′.ϕ)) returns #(Π.ϕ).

Before explaining our caching strategy, we need a last no-
tion. To maximize the number of cache hit, we would like to
reduce the prefix of a QBF as much as possible, while still
being able to recover the model count. We do this by definin-
ing a notion of minimal reduction of a prefix Π as follows:
Given a prefix Π and a set of variables V ⊆ Var(Π), define
Shrink(Π, V) to be the subprefix obtained as follows: first,
remove from Π every existential variable that does not appear
in V and then, if the remaining prefix starts with a univer-
sally quantified block, remove from this block (and only this
one) every variable that does not appear in V . One can ob-
serve that Shrink(Π, V) is a reduction of Π. Actually it is
the minimal reduction Π′ of Π such that Var(Φ) ⊆ Var(Π′)
in the following sense:

Lemma 4. Let Π′ be a reduction of Π such that V ⊆
Var(Π′). Then Shrink(Π, V) is a reduction of Π′. In par-
ticular, Shrink(Π, V) = Shrink(Π′, V).

Proof. We show that every variable x of Shrink(Π, V)
are also in Π′. First assume x is existentially quantified.

Then by definition it is in V . Hence x is also in Π′.
Now let x be a variable that is universally quantified in
Shrink(Π, V). Then first assume there is an existential
variable y before it in Shrink(Π, V). In this case, from
what precedes, y is also in Π′ and since Π′ is a reduc-
tion, every universal variable of Π after y have to be in
Π′. In particular, x is in Π′. Now, assume that only uni-
versal variables appear before x in Shrink(Π, V). In this
case, x ∈ V by definition of Shrink, hence x appears in
Π′ since V ⊆ Var(Π′). Hence Shrink(Π, V) is a reduc-
tion of Π′. We hence also that have Shrink(Π, V) is a re-
duction of Shrink(Π′, V). But with the same argument,
Shrink(Π′, V) is also a reduction of Shrink(Π, V). Hence
Shrink(Π, V) = Shrink(Π′, V).

We are now ready to explain our caching method. We
maintain a cache mapping CNF formula to an integer de-
fined as follows: we let Π0 be the prefix used in the very
first call of Algorithm 1. Then for every CNF formulas
ϕ such that cache[ϕ] ̸= ∅, we maintain the invariant that
cache[ϕ] = #(Π.ϕ) where Π = Shrink(Π0,Var(ϕ)). We
maintain also the invariant that every recursive call of Algo-
rithm 1 on Πϕ is such that Π is a reduction of Π0.

Upon these invariants, line 6 of Algorithm 1 re-
turns the correct value. Indeed, by Lemma 4, Π′ =
Shrink(Π,Var(ϕ′)) is equal to Shrink(Π0,Var(ϕ

′)) and
by Lemma 3, CountReduct(ϕ′,Π,Π′) returns #(Π.ϕ′)
which is equal to #(Π.ϕ) by Lemma 1.

It is now easy to check that both invariants hold at each re-
cursive call. Indeed, every recursive call either removes the
first variable of Π′ (lines 14 and 15), which transforms a re-
duction of Π0 to another reduction of Π0. Or it removes ex-
istential variables that do not appear in the formula (line 11)
which also produces a reduction of Π0 again.

Finally, when the cache is modified on line 17, the
value stored for ϕ′ is equal to #(Π′.ϕ′) where Π′ =
Shrink(Π,Var(ϕ′)) by Theorem 1 and Proposition 1. By
Lemma 4 Π′ = Shrink(Π0,Var(ϕ

′)). Hence cache[ϕ′] is
set to the desired value.

Example 4 (Example 1 cont’d). Let us revisit the formula
Φ from Example 1, assuming our initial focus is on count-
ing the ¬a branch. Subsequently, x2 ∨ y2 is incorpo-
rated into the cache with a count of 2. It is important
to note that the relevant quantifier prefix under considera-
tion here is Π′ = ∀x2∃y2, distinct from the broader Π =
∀x1x2∃y1y2. One can observe that Π′ is a reduction of
Π. Hence we can iteratively apply Lemma 2 to retrieve
#(Π.ϕ|¬a) from #(Π′.ϕ|¬a). The former value is hence
equal to (22

1

#(Π′.ϕ|¬a))
2 by applying Lemma 2 first on y1

and then on x1. By observing that #(Π.′ϕ|¬a) = 2, we hence
deduce that #(Π.ϕ|¬a) = 64 which can be verified to be the
correct model count.

3.5 Counting Tree Models of Valid QBF Formula
When Algorithm 1 is called on a formula whose matrix is a
valid CNF formula, then we can explicitly compute the num-
ber of tree models using Algorithm 2 and the right parame-
ters, as follows:

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1857

Algorithm 2: CountReduct
input : Π = Q1x1 . . . Qnxn: a quantifier prefix,

Π′: a reduction of Π, N : an integer
output: the number of tree models of Π.ϕ if

N = #(Π′.ϕ)
1 p← 0, L← [];
2 for i from 1 to n do

if xi /∈ Var(Π′) then L.append((Qi, p));
else if Qi = ∀ then p← p+ 1;

3 M ← N , ℓ← length(L);
4 for i from ℓ to 1 do

(Q, p)← L[i];
if Q = ∀ then M ←M2 else M ← 22

p ·M ;
5 return M;

Corollary 1. Let Π be a quantifier prefix. Then Algorithm 2
on parameters (Π, ∅, 1) returns #(Π.⊤).

Proof. It is immediate from Lemma 3 since ∅ is a reduction
of Π for any Π and #(⊤) = 1.

Algorithm 1 uses this connection on line 4 to return the
correct number of tree models when the matrix ϕ′ is valid.

Example 5 (Example 1 cont’d). Let us revisit again the for-
mula Φ in Example 1, focusing specifically on the valid for-
mula (Φ|¬a)|x2

) = ∀x1∃y1y2.⊤ obtained in Example 2. Al-
gorithm 2 is hence called with parameters Π = ∀x1∃y1y2,
Π′ = ∅ and N = 1. The first for-loop construct the list
L = [(∀, 0), (∃, 0), (∃, 0)]. Then N is modified: the last two
elements of L both induce a multiplication of N by 22

0

= 2
and the first one squares everything. Hence the algorithm re-
turns 42 = 16 achieving the correct count of tree models for
the given formula.

4 Experimental Evaluation
We implemented the algorithm introduced above in a C++
tool called d4-QBF.1 This tool builds upon the infrastructure
provided by the propositional model counter D4 [Lagniez and
Marquis, 2019].2 With our evaluation, we aim at addressing
the following research questions:

RQ1. How does d4-QBF scale in terms of solved in-
stances and runtime?

RQ2. What is the tree model count of challenging
benchmarks and how can we ensure correctness
of the counting algorithm?

Environment. All experiments were executed on a com-
pute cluster with dual-socket 16 core AMD EPYC 7313 pro-
cessors with 3.7 GHz and 256 GB main memory. We run all
tools on a single core with a timeout of 900 seconds. The
memory limit was set to 32GB.

1https://zenodo.org/records/11153123
2https://github.com/crillab/d4

#Vars #Clauses #QBlocks
KBKFTrue 8n+ 1 13n+ (n− 1) 2n+ 2
KBKFTrueTseitin 8n+ 1 18n 2n+ 2
EQTrueNested 3n 2n+ 1 2n
EQTrue 3n 2n+ 1 2
ParityTrue 2n 4(n− 1) + 2 2

Table 1: Properties of the formula families w.r.t. parameter n.

Other tools. To the best of our knowledge, currently there
exists no model counters for QBFs with arbitrary prefix. For
experiments on 2QBFs (QBFs with only quantifier alterna-
tion), we run the two tools presented in [Plank et al., 2023]:
(1) qcounter, an enumerative solution-counter and (2) base-
line, a simple baseline implementation that enumerates all as-
signments of the universal and calls the propositional model
counter Ganak [Sharma et al., 2019]. For evaluating our ap-
proach on formulas with more than two quantifier alterna-
tions, we run the two QBF solvers Caqe [Rabe and Ten-
trup, 2015] and DepQBF [Lonsing and Egly, 2017] which
are based on orthogonal solving technology and which are
top-ranked in the recent QBF competition.

Benchmarks. To evaluate our implementation, we con-
sider seven different families of QBFs originating from two
sources:

• Unique-SAT and Random Benchmarks [Plank et al.,
2023]. These formulas are true 2QBFs with prefix
∀X∃Y for which the exact model count is known. The
random set consists of the 3.950 true instances with
2 ≤ |X|, |Y | ≤ 11. The unique-SAT set consists of
497 formulas that were build from propositional formu-
las with 26 to 240 variables and 61 to 643 clauses. Given
a propositional formula ϕ, the negated unique-SAT QBF
encoding based on [Kleine Büning et al., 1995] results in
a false QBF iff ϕ has exactly one solution. If the propo-
sitional formula ϕ contains n variables and has m > 1
models, then the resulting QBF has (2n)2

n−m(m− 1)m

different solutions.

• Crafted instances [Heisinger and Seidl, 2023]. Crafted
formula families play an important role in proof com-
plexity. Because of their scalability on a parameter
n they provide also expressive benchmarks for test-
ing solvers. Usually, only false instances are consid-
ered, but [Heisinger and Seidl, 2023] presented the
true formula families KBKFTrue and ParityTrue that
were also part of the QBFGallery 2023.3 In addi-
tion to these two families, we introduce three more
families: KBKFTrueTseitin, EQTrue, EQTrueNested.
Therefore, we extended the generator of [Heisinger and
Seidl, 2023]. Properties of the formulas are shown in
Table 1. Whereas ParityTrue and EqTrue are 2QBFs,
KBKFTrue, KBKFTrueTseitin, and EQTrueNested have
n quantifier alternations (where n is the parameter of
each specific instance). For our experiments, we chose
n ∈ {1, . . . , 25}.

3http://qbfeval.org

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1858

https://zenodo.org/records/11153123
https://github.com/crillab/d4
http://qbfeval.org

Figure 2: Runtime comparison with 2QBF counters (left). Runtimes of d4-QBF on all benchmarks (middle). Tree model count (right).

Analysis of RQ1 We compared the runtimes of d4-QBF
and the 2QBF solution counters baseline and qcounter on
all 2QBF benchmarks (UniqueSAT, Random, ParityTrue, and
EQ). The results are shown in the left plot of Figure 2. Our
tool d4-QBF solved all of the considered 2QBFs consider-
ably faster than the two other tools. Without the optimiza-
tions presented above, our algorithm corresponds to the ap-
proach implemented in baseline. The runtimes give a clear
empirical indication of the positive impact of the proposed
optimizations on the solving performance.

The runtimes of d4-QBF for all considered benchmark sets
are shown in the middle of Figure 2. Out of 2586 formulas,
only 10 formulas could not be solved (all from the crafted
formulas set). As there are currently no other solution coun-
ters for QBFs of arbitrary prefix, we run QBF solvers on the
crafted formulas. The number of solved formulas are shown
in Table 2. Even state-of-the-art solvers could not solve all of
the benchmarks. Even more, there are some formulas that are
exclusively solved by d4-QBF. These results demonstrate the
practical feasibility of tree model counting even for challeng-
ing benchmarks.

Analysis of RQ2 The 2QBF benchmarks of [Plank et al.,
2023] are generated in such a manner that the number of tree
models is known. The formulas of the ParityTrue family have
only solution independent of parameter n. Because of their
structured nature, we could describe the number of solutions
of the other families with (non-linear) recurrences that could
be confirmed by d4-QBF. As an interesting side effect, we
get some novel insights on the characteristics of the crafted

D
ep

Q
BF

C
aq

e

ba
se

lin
e

qc
ou

nt
er

d4
-Q

BF

KBKFTrue 18 19 - - 15
KBKFTrueTseitin 18 8 - - 24
EQTrueNested 24 24 - - 24
EQTrue 24 24 16 6 23
ParityTrue 24 18 16 16 24

Table 2: Number of solved instances for crafted formula familes.

formula families and their solution space. So far, they have
mainly been investigated from a proof complexity point of
view [Beyersdorff et al., 2021]. The right plot of Figure 2
shows the number of solutions for the instances solved by
d4-QBF.

5 Conclusion and Perspectives

In this paper, we addressed the intricate problem of count-
ing solutions for QBFs. Our primary contribution is the de-
velopment of a comprehensive top-down tree model counter,
named d4-QBF, specifically crafted to proficiently handle
true QBFs with arbitrary quantifier prefix. Throughout our
exploration, we provide the theory to safely incorporate a
powerful branching heuristic. Further, we brought attention
to the crucial considerations of connected components, free
variables, and caching, all of which play key roles in ensuring
the efficiency and accuracy of the solution counting process.
In addition to being the first counter capable of handling ar-
bitrary QBF formulas, our tool, d4-QBF, distinguishes itself
by surpassing state-of-the-art counters specifically designed
for 2QBFs. This practical superiority underscores the algo-
rithm’s robustness and positions it as a promising solution for
solution counting challenges in the domain of QBFs.

Looking forward, our focus is on exploring more tai-
lored simplification techniques to replace propositional Bi-
nary Constraint Propagation (BCP) by the QBF version
QBCP as employed in [Lonsing and Egly, 2018]. Addi-
tionally, we plan to replace the initial SAT call in the al-
gorithm with a strategy customized for QBF formulas. We
aim to explore the potential effectiveness of preprocessing
techniques [Wimmer et al., 2019; Heule et al., 2015; Cheng
and Jiang, 2023], similar to their successful application in
solving the #SAT problem [Lagniez and Marquis, 2017;
Lagniez et al., 2020]. Another key area for enhancement is
the representation of the tree model count, which, at worst,
necessitates an exponential number of bits. Our proposed so-
lution involves investigating compact representations, such as
polynomial representations, to achieve more efficient model-
ing.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1859

Acknowledgments
This work has benefited from the support of the National Re-
search Agency under France 2030, MAIA Project ANR-22-
EXES-0009 and by project ANR KCODA, ANR-20-CE48-
0004. The Institute for Symbolic Artificial Intelligence was
in part supported by the LIT AI Lab funded by the State of
Upper Austria.

References
[Audemard et al., 2022] Gilles Audemard, Jean-Marie

Lagniez, and Marie Miceli. A new exact solver for
(weighted) max#sat. In 25th International Conference
on Theory and Applications of Satisfiability Testing, SAT
2022, volume 236 of LIPIcs, pages 28:1–28:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[Aziz et al., 2015] Rehan Abdul Aziz, Geoffrey Chu, Chris-
tian J. Muise, and Peter J. Stuckey. #∃sat: Projected model
counting. In Theory and Applications of Satisfiability Test-
ing - SAT 2015 - 18th International Conference, volume
9340 of Lecture Notes in Computer Science, pages 121–
137. Springer, 2015.

[Balabanov and Jiang, 2012] Valeriy Balabanov and Jie-
Hong R. Jiang. Unified QBF certification and its appli-
cations. Formal Methods Syst. Des., 41(1):45–65, 2012.

[Balabanov et al., 2015] Valeriy Balabanov, Jie-
Hong Roland Jiang, Mikolas Janota, and Magdalena
Widl. Efficient extraction of QBF (counter)models from
long-distance resolution proofs. In Proc. of the 29th AAAI
Conf. on Artificial Intelligence (AAAI), pages 3694–3701.
AAAI Press, 2015.

[Bart et al., 2014] Anicet Bart, Frédéric Koriche, Jean-Marie
Lagniez, and Pierre Marquis. Symmetry-driven decision
diagrams for knowledge compilation. In Proc. of 21st Eu-
rop. Conf. on Artificial Intelligence (ECAI), volume 263 of
Frontiers in Artificial Intelligence and Applications, pages
51–56. IOS Press, 2014.

[Bauland et al., 2005] Michael Bauland, Elmar Böhler, Na-
dia Creignou, Steffen Reith, Henning Schnoor, and Herib-
ert Vollmer. Quantified constraints: The complexity of
decision and counting for bounded alternation. Electron.
Colloquium Comput. Complex., TR05-024, 2005.

[Becker et al., 2012] Bernd Becker, Rüdiger Ehlers,
Matthew Lewis, and Paolo Marin. ALLQBF Solving by
Computational Learning. In Proc. of the 10th Int. Conf.
on Automated Technology for Verification and Analysis
(ATVA), volume 7561 of LNCS, pages 370–384. Springer,
2012.

[Beyersdorff et al., 2014] Olaf Beyersdorff, Leroy Chew,
and Mikolas Janota. On unification of QBF resolution-
based calculi. In Proc. of the 39th Int. Symp. on Math-
ematical Foundations of Computer Science (MFCS), vol-
ume 8635 of LNCS, pages 81–93. Springer, 2014.

[Beyersdorff et al., 2021] Olaf Beyersdorff, Janota Mikolás,
Florian Lonsing, and Martina Seidl. Quantified Boolean
Formulas. In Handbook of Satisfiability, volume 336 of

Frontiers in Artificial Intelligence and Applications, pages
1177–1221. IOS Press, 2021.

[Birnbaum and Lozinskii, 1999] Elazar Birnbaum and
Eliezer L. Lozinskii. The good old Davis-Putnam
procedure helps counting models. J. Artif. Intell. Res.,
10:457–477, 1999.

[Cheng and Jiang, 2023] Che Cheng and Jie-Hong R. Jiang.
Lifting (D)QBF preprocessing and solving techniques to
(D)SSAT. In Proc. of the 37th AAAI Conf. on Artificial
Intelligence (AAAI), 35th Conf. on Innovative Applications
of Artificial Intelligence (IAAI), pages 3906–3914. AAAI
Press, 2023.

[Chew and Slivovsky, 2022] Leroy Chew and Friedrich
Slivovsky. Towards uniform certification in QBF. In
Proc. of the 39th Int. Symp. on Theoretical Aspects of
Computer Science (STACS), volume 219 of LIPIcs, pages
22:1–22:23. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022.

[Dubois, 1991] Olivier Dubois. Counting the number of so-
lutions for instances of satisfiability. Theor. Comput. Sci.,
81(1):49–64, 1991.

[Fremont et al., 2017] Daniel J. Fremont, Markus N. Rabe,
and Sanjit A. Seshia. Maximum model counting. In Pro-
ceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, pages 3885–3892. AAAI Press, 2017.

[Giunchiglia et al., 2021] Enrico Giunchiglia, Paolo Marin,
and Massimo Narizzano. Reasoning with quantified
boolean formulas. In Handbook of Satisfiability - Second
Edition, volume 336 of Frontiers in Artificial Intelligence
and Applications, pages 1157–1176. IOS Press, 2021.

[Goultiaeva et al., 2011] Alexandra Goultiaeva, Allen Van
Gelder, and Fahiem Bacchus. A uniform approach for gen-
erating proofs and strategies for both true and false QBF
formulas. In Proc. of the 22nd Int. Joint Conf. on Artificial
Intelligence (IJCAI), pages 546–553. IJCAI/AAAI, 2011.

[Heisinger and Seidl, 2023] Simone Heisinger and Martina
Seidl. True crafted formula families for benchmarking
quantified satisfiability solvers. In Proc. of the 16th Int.
Conf. on Intelligent Computer Mathematics (CICM), vol-
ume 14101 of LNCS, pages 291–296. Springer, 2023.

[Hemaspaandra and Vollmer, 1995] Lane A. Hemaspaandra
and Heribert Vollmer. The satanic notations: count-
ing classes beyond #P and other definitional adventures.
SIGACT News, 26(1):2–13, 1995.

[Heule et al., 2015] Marijn Heule, Matti Järvisalo, Florian
Lonsing, Martina Seidl, and Armin Biere. Clause elimina-
tion for SAT and QSAT. J. Artif. Intell. Res., 53:127–168,
2015.

[Kleine Büning and Bubeck, 2021] Hans Kleine Büning and
Uwe Bubeck. Theory of quantified boolean formulas. In
Handbook of Satisfiability - Second Edition, volume 336 of
Frontiers in Artificial Intelligence and Applications, pages
1131–1156. IOS Press, 2021.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1860

[Kleine Büning et al., 1995] Hans Kleine Büning, Marek
Karpinski, and Andreas Flögel. Resolution for quantified
boolean formulas. Inf. Comput., 117(1):12–18, 1995.

[Ladner, 1989] Richard E. Ladner. Polynomial space count-
ing problems. SIAM J. Comput., 18(6):1087–1097, 1989.

[Lagniez and Marquis, 2017] Jean-Marie Lagniez and Pierre
Marquis. On preprocessing techniques and their impact
on propositional model counting. J. Autom. Reason.,
58(4):413–481, 2017.

[Lagniez and Marquis, 2019] Jean-Marie Lagniez and Pierre
Marquis. A recursive algorithm for projected model count-
ing. In Proc. of the 33rd Conf. on Artificial Intelligence
(AAAI), 31st Innovative Applications of Artificial Intelli-
gence Conf. (IAAI), pages 1536–1543. AAAI Press, 2019.

[Lagniez and Marquis, 2021] Jean-Marie Lagniez and Pierre
Marquis. About caching in d4 2.0. In Workshop on Count-
ing and Sampling 2021, 2021.

[Lagniez et al., 2020] Jean-Marie Lagniez, Emmanuel
Lonca, and Pierre Marquis. Definability for model
counting. Artif. Intell., 281:103229, 2020.

[Littman et al., 1998] Michael L. Littman, Judy Goldsmith,
and Martin Mundhenk. The computational complexity of
probabilistic planning. J. Artif. Intell. Res., 9:1–36, 1998.

[Lonsing and Egly, 2017] Florian Lonsing and Uwe Egly.
Depqbf 6.0: A search-based QBF solver beyond tradi-
tional QCDCL. In Proc. of the 26th Int. Conf. on Auto-
mated Deduction (CADE), volume 10395 of LNCS, pages
371–384. Springer, 2017.

[Lonsing and Egly, 2018] Florian Lonsing and Uwe Egly.
QRAT+: generalizing QRAT by a more powerful QBF re-
dundancy property. In Proc. of the 9th Int. Conf. on Auto-
mated Reasoning (IJCAR), volume 10900 of LNCS, pages
161–177. Springer, 2018.

[Majercik, 2009] Stephen M. Majercik. Stochastic boolean
satisfiability. In Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors, Handbook of Satisfiabil-
ity, volume 185 of Frontiers in Artificial Intelligence and
Applications, pages 887–925. IOS Press, 2009.

[Plank et al., 2023] Andreas Plank, Sibylle Möhle, and Mar-
tina Seidl. Enumerative level-2 solution counting for quan-
tified boolean formulas (short paper). In Proc. of the
29th Int. Conf. on Principles and Practice of Constraint
(CP), volume 280 of LIPIcs, pages 49:1–49:10. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[Rabe and Tentrup, 2015] Markus N. Rabe and Leander Ten-
trup. CAQE: A certifying QBF solver. In Proc. of the
Int. Conf. on Formal Methods in Computer-Aided Design
(FMCAD), pages 136–143. IEEE, 2015.

[Sang et al., 2004] Tian Sang, Fahiem Bacchus, Paul Beame,
Henry A. Kautz, and Toniann Pitassi. Combining com-
ponent caching and clause learning for effective model
counting. In Proc. of the 7th Int. Conf. on Theory and Ap-
plications of Satisfiability Testing (SAT), Online Proceed-
ings, 2004.

[Sang et al., 2005] Tian Sang, Paul Beame, and Henry A.
Kautz. Heuristics for fast exact model counting. In Proc.
of the 8th Int. Conf. on Theory and Applications of Satis-
fiability Testing (SAT), volume 3569 of LNCS, pages 226–
240. Springer, 2005.

[Sharma et al., 2019] Shubham Sharma, Subhajit Roy, Mate
Soos, and Kuldeep S. Meel. GANAK: A scalable proba-
bilistic exact model counter. In Sarit Kraus, editor, Proc.
of the 28 Int. Joint Conf. on Artificial Intelligence (IJCAI),
pages 1169–1176. ijcai.org, 2019.

[Shaw et al., 2024] Arijit Shaw, Brendan Juba, and
Kuldeep S. Meel. An approximate skolem function
counter, 2024.

[Shukla et al., 2019] Ankit Shukla, Armin Biere, Luca
Pulina, and Martina Seidl. A survey on applications of
quantified Boolean formulas. In Proc. of the Int. Conf.
on Tools with Artificial Intelligence (ICTAI), pages 78–84.
IEEE, 2019.

[Shukla et al., 2022] Ankit Shukla, Sibylle Möhle, Manuel
Kauers, and Martina Seidl. Outercount: A first-level
solution-counter for quantified boolean formulas. In Proc.
of the 15th Int. Conf on Intelligent Computer Mathe-
matics (CICM), volume 13467 of LNCS, pages 272–284.
Springer, 2022.

[Stockmeyer, 1976] Larry J. Stockmeyer. The polynomial-
time hierarchy. Theor. Comput. Sci., 3(1):1–22, 1976.

[van Bremen et al., 2021] Timothy van Bremen, Vincent
Derkinderen, Shubham Sharma, Subhajit Roy, and
Kuldeep S. Meel. Symmetric component caching for
model counting on combinatorial instances. In Proc. of
Thirty-Fifth AAAI Conf. on Artificial Intelligence, pages
3922–3930. AAAI Press, 2021.

[Wimmer et al., 2019] Ralf Wimmer, Christoph Scholl, and
Bernd Becker. The (D)QBF preprocessor HQSpre - un-
derlying theory and its implementation. J. Satisf. Boolean
Model. Comput., 11(1):3–52, 2019.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1861

	Introduction
	Preliminaries
	A Top-Down QBF Counter
	Algorithm
	Branching Strategy
	Connected Components
	Counting Tree Models from Cache
	Counting Tree Models of Valid QBF Formula

	Experimental Evaluation
	Conclusion and Perspectives

