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Abstract
Graph classification benchmarks, vital for assessing
and developing graph neural networks (GNNs),
have recently been scrutinized, as simple methods
like MLPs have demonstrated comparable
performance. This leads to an important question:
Do these benchmarks effectively distinguish the
advancements of GNNs over other methodologies?
If so, how do we quantitatively measure this
effectiveness? In response, we first propose an
empirical protocol based on a fair benchmarking
framework to investigate the performance
discrepancy between simple methods and GNNs.
We further propose a novel metric to quantify
the dataset effectiveness by considering both
dataset complexity and model performance. To
the best of our knowledge, our work is the first to
thoroughly study and provide an explicit definition
for dataset effectiveness in the graph learning area.
Through testing across 16 real-world datasets, we
found our metric to align with existing studies
and intuitive assumptions. Finally, we explore
the causes behind the low effectiveness of certain
datasets by investigating the correlation between
intrinsic graph properties and class labels, and
we developed a novel technique supporting the
correlation-controllable synthetic dataset generation.
Our findings shed light on the current understanding
of benchmark datasets, and our new platform could
fuel the future evolution of graph classification
benchmarks.

1 Introduction
Graph Neural Networks (GNNs) have exhibited superior
performance in various domains, including recommendation
system [Wu et al., 2022], molecule property prediction
[Wieder et al., 2020], and natural language processing [Wu
et al., 2021], etc. To evaluate GNN models in these tasks,
specific datasets are often selected as benchmark datasets.
Given this mission, a high-quality benchmark dataset should
be capable to differentiate the advancements of diverse
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models. For example, current available benchmarks, such
as OGB [Hu et al., 2020], TUDataset [Morris et al., 2020],
etc., serve for various link-wise, node-wise, and graph-wise
tasks evaluation, as well as graph classification, aiming to
automatically discover the optimal method for given tasks.
These datasets and benchmark frameworks have immensely
facilitated GNN research.

However, recent studies [Errica et al., 2020; Zhao and
Wang, 2019; Hu et al., 2020; Dwivedi et al., 2023;
Morris et al., 2020] have shown that GNNs may not
consistently surpass other baseline methods in specific graph
classification tasks. Some simple baseline methods can
achieve performance similar to GNNs, and sometimes even
better. For example, in the benchmark of [Errica et al., 2020],
the MoleculeFingerprint baseline outperforms significantly
the widely used GNN models such as GIN [Xu et al., 2018],
GraphSage [Hamilton et al., 2017] on three out of four
molecular datasets. Nevertheless, despite current research
primarily having made significant achievements in analyzing
the theoretical expressive power of GNNs [Xu et al., 2019;
Feng et al., 2022; Wang and Zhang, 2022] and training
schemes [Duan et al., 2022], the reasons for GNNs’ failures
from these evidences have not been thoroughly analyzed. Few
researchers are paying attention to the issues inherent in the
datasets themselves.

Therefore, we have adopted a different perspective:
dataset compatibility. Our investigation focuses on whether
the datasets themselves are suitable for evaluating the
advancements of Graph Neural Networks (GNNs) compared
to other methods. This aspect is critical for a fair assessment of
whether a GNN method has truly shown improvement. Studies
in neural language processing, like [Xiao et al., 2022], define
effectiveness as the performance variance across different
methods. However, this definition is not directly applicable
to graph classification problems. For example, in binary
classification problems versus 10-class classification problems,
the absolute values of variance are not directly comparable.
Hence, in our paper, we reevaluate the effectiveness of existing
datasets and attempt to address the following two questions:

RQ1: Can commonly used graph classification datasets
serve the benchmarking purpose which is to effectively
distinguish advancements of GNNs compared with other
methods? To address this question, we propose an empirical
protocol (Sec.2.1) to investigate the performance disparity

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2144



between baseline methods and GNN-based methods in terms
of the structures and attributes separately by restricting
the information input types, i.e., structural information or
attributed information. Specifically, we re-organize 16 real-
world datasets (Sec.2.2) from common benchmarks across
diverse scales and application domains, and conduct extensive
experiments with the proposed protocol to investigate the
performance gaps fairly on a well-developed benchmark
framework1 extended from [Errica et al., 2020], with our new
improvements: 1) supporting datasets from other benchmarks
such as OGB, TUDatasets, and synthetic datasets. 2)
supporting the construction and combination of various
artificial node features, not limited to the framework proposed
by [Cui et al., 2022], helps to investigate the impact of different
information inputs on the performance of GNNs.

RQ2: How to measure the effectiveness of existing
graph classification datasets? To answer this question, we
design a novel metric (Sec.3.1) to quantify the effectiveness of
diverse classification datasets by normalizing the performance
gap into a scale-free quantity, with the consideration of the
prediction difficulty of datasets and diversity in the number
of class labels. The fairness and efficacy of the metric
are justified on 16 datasets. For further exploration of the
causes of the low effectiveness of datasets, we investigate
the relationships between basic graph properties and class
labels, and develop a novel approach (Sec.4.2) for generating
controllable synthetic datasets, which enables precise control
over the degree of correlations between graph properties and
class labels. This allows us to study the effectiveness in
a controlled environment, providing deeper insights across
varying conditions. Additionally, inspired by [Xiao et al.,
2022], we further develop a straightforward yet effective
regression method to predict the effectiveness (Sec.4.3) of
a given dataset.

2 Empirical Studies of Existing Graph
Classification Datasets

This section delves into empirical studies of existing graph
classification datasets, offering a clear, concise, and engaging
overview. Initially, we establish a straightforward and
insightful evaluation measurement, utilizing diverse datasets
to gain empirical insights that align with findings from
other research. However, this simple measurement has
its limitations. To address these shortcomings, we will
introduce a novel metric designed specifically to overcome
these limitations in Section 3.

2.1 An Empirical Protocol for Evaluating Dataset
Discriminability

We propose a protocol that can fairly evaluate the ability
of a graph classification dataset for discriminating the
advancements of graph-aware methods including GNNs and
graph-kernel based approches over baselines. An effective
strategy is to evaluate the performance gap between them. If
the performance of graph-aware methods and simple baselines
exhibit similarity, it indicates that the dataset lacks the

1https://github.com/ICLab4DL/GNNBenchEffectiveness

necessary discriminatory power, thus questioning its suitability
as a benchmark. The protocol encompasses three main
components: (1) the baselines and GNNs for classification;
(2) the evaluation framework; and (3) the performance gaps
as determined by the evaluation framework. In the rest of this
section, we will delve into these three key components and
introduce some notations for further usage.

Evaluation Framework. The framework is built upon the
benchmarking framework proposed by [Errica et al., 2020],
the detailed architecture can be found in the supplementary.
This framework leverages risk assessment and model selection
schemes to provide a fair comparison of GNN models using a
k-fold cross-validation procedure for model assessment. Each
validation procedure incorporates a model selection process
with varying hyperparameters. We further enhance this basic
framework in the following ways:

(1) We expand the dataset splitting schemes to support
additional strategies, such as the molecular scaffold splitting
scheme and user-defined splitting schemes. These offer
meaningful, domain-aware splits as opposed to random splits.

(2) Our framework allows for the loading of datasets from
various sources, including PyTorch Geometric, Open Graph
Benchmark (OGB), as well as user-defined synthetic datasets.

(3) Drawing inspiration from the studies [Cui et al.,
2022], we have equipped our framework to accept various
compositions of graph-level or node-level statistical features
as model input, moving beyond the support for only single
node labels or edge labels.

Assessment of performance gap. GNNs are superior to
other neural network structures on graph data because of their
ability to capture structure information. However, performance
gaps in previous works fail to distinguish the effects of
structure and attribute. To solve this problem, we decouple the
performance gap into the structural gap and attributed gap.
Structural performance gap is denoted by δS. It measures
the difference in classification accuracy between a structure-
dominated baseline and the best performance achieved by
structure-aware methods without any attributed information,
including graph-kernel based approaches and GNNs with
artificial node attributes as input features. (e.g., node degree
and random noise). Attributed performance gap is denoted by
δA. It quantifies the accuracy difference between an attribute-
dominated baselines that vary across applications and GNNs
that utilize real node or edge attributes as input features. Note
that GNNs with real node or edge attributes inevitably involve
a part of structural information. A formal performance gap is
given by the Definition 1.

Definition 1. Given a dataset D, a baseline method MBaseline
type ,

and a graph-based method MGraph
type , the performance

gap δtype(D,R,MGraph,MBaseline) (simply denoted by δtype)
between baseline and graph-based method is defined as:

δtype ≜ R(D,MGraph
type )−R(D,MBaseline

type ), type ∈ {S,A},

where R(D,M) is the numerical value of a given evaluation
metric such as mean classification accuracy or mean AUC-
ROC (Area Under the Receiver Operating Characteristics),
obtained by model M on dataset D.
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Choices of baselines. Following the insights from [Cui
et al., 2022; Errica et al., 2020], we categorize baselines
into two types based on input information: structure-
dominated baselines and attribute-dominated baselines. This
classification helps in delivering a detailed analysis as node
attributes and structures contribute differently to model
performance across datasets. For structure-dominated
baselines, we use shallow MLPs with average graph degrees as
input, denoted as MBaseline

S . For attribute-dominated baselines
in attribute-graph datasets, we encode molecules as per [Hu
et al., 2020] and use the MoleculeFingerprint model for
classification, while non-attribute graph datasets employ a
combination of pooling layers and shallow MLPs. These are
represented as MBaseline

A .

Choices of graph-aware methods. In our experiments,
we carefully choose the MGraph

type and MBaseline
type . We use

a diverse range of graph-based methodologies, including
GNN models and graph-kernel based methods for MGraph

type .
Specifically, we employed the Graph Isomorphism Network
(GIN) for its spatial approach, which focuses on the
physical layout of the graph, accentuating local structures
and node-level relationships. Concurrently, the Graph
Convolutional Network (GCN) was chosen for its spectral
method approximation, where node features are transformed
into the spectral domain using the graph Fourier transform,
allowing for a global analysis of the overall graph structure
and relationships. Additionally, we utilized graph-kernel
based methods including Weisfeiler-Lehman graph kernel
(WL-GK) [Shervashidze et al., 2011], the Subgraph-Matching
kernel (SM-GK) [Kriege and Mutzel, 2012], and the
Shortest-Path kernel (SP-GK) [Borgwardt and Kriegel, 2005].
This selection of both spatial (GIN) and spectral (GCN)
methods, complemented by kernel-based techniques, provides
a comprehensive and balanced evaluation of local and global
graph features, crucial for the depth and breadth of our study
in graph-based machine learning.

The performance gaps δS and δA can indicate the
discriminating ability of the dataset and provide insights into
it. In particular, a narrow gap with high accuracy from both
methods suggests the dataset may be too simple to offer
discrimination. Conversely, low accuracy from both methods
implies the dataset’s information is underutilized, necessitating
a more advanced approach. A large gap indicates the dataset’s
strong discriminative power for these two models.

2.2 Collection of Diverse Datasets
Bio&Chem. In the fields of biology and chemistry, the
ability to predict molecular properties, such as toxicity or
biological activity of proteins plays a pivotal role in drug
discovery and development. Datasets such as MUTAG, D&D
[Yanardag and Vishwanathan, 2015], PROTEINS, and NCI1
furnish a wealth of information for constructing and training
machine learning models in these disciplines. Similarly, in
chemical research, datasets like HIV and ENZYMES are
indispensable for decoding the interactions between chemical
compounds and their potential impacts on living organisms.
The large-scale PPA dataset facilitates an understanding
of intricate protein interactions and functions, significantly

Domain Dataset Graphs Classes Average
nodes Features

Bio&Chem

BACE♡ 1513 2 34.09 9|-
Tox21♡ 7831 2 18.57 9|3
HIV♡ 41,127 2 25.5 9|3
PPA♡ 158,100 37 243.4 -|7

MUTAG⋆ 188 2 17.9 7|-
NCI1⋆ 4,110 2 29.8 37|-

PROTEINS⋆ 1,113 2 39.1 3|-
AIDS⋆ 2000 2 15.69 38|-
DD⋆ 41,127 2 25.5 9|3

ENZYMES⋆ 600 6 32.6 3|-

Social
science

IMDB-B⋆ 1,000 2 19.77 -
IMDB-M⋆ 1,500 3 13 -

REDDIT-B⋆ 2,000 2 429.61 -
COLLAB⋆ 5,000 3 74.49 -

CV
MNIST■ 55,000 10 70.6 3|-

CIFAR10■ 45,000 10 117.6 5|-

Table 1: Summary of datasets with different scales, feature types and
classification numbers in our experiments.

contributing to advancements in personalized medicine and
therapeutic approaches.

Social science. In the domain of social science, datasets
like IMDB-Binary (IMDB-B), IMDB-Multi (IMDB-M),
REDDIT-Binary (REDDIT-B), COLLAB are used to study
and understand various aspects of social interactions and
behaviors.

Computer vision (CV). The MNIST and CIFAR10 have
been fundamental in shaping the field of computer vision,
offering a wide range of images for tasks like object
recognition and classification. These two datasets can verify
the positional learning ability of GNNs, as the samples are
transformed from images into graphs with the super-pixels
and coordinates as the node features that inherently carry the
positional information of each node.

2.3 Observations of Performance Gaps on 16
Real-world Datasets

Experimental setup. Utilizing our proposed framework,
we assessed 16 real-world datasets following the standard
protocol. In Table 2, we show the main experimental results
obtained by the protocol over 16 real-world datasets, in which
14 datasets except for PPA and Tox21 were tested by 10-
fold cross-validation. The baselines, GNNs and graph kernel
methods are introduced in Sec2.1. (Note that, NA denotes the
dataset with no attributes, - denotes the dataset is too large to
run.) The values that are both bolded and underlined represent
the highest accuracy across all attributed and structural models,
the solely bolded values indicate the highest accuracy within
one type of models. As observed from this table, GNNs excel
as the state-of-the-art (SOTA) on the majority of datasets.
However, it’s important to highlight that the performance
gap between the baseline methods and GNNs is minimal
for approximately half of the datasets, which is visually
represented in Figure 1.

In Figure 1(a), we depict the highest attributed accuracy gap
δA, comparing the GIN and GCN models. For molecular and
protein datasets (HIV, PPA, BACE, and Tox21), we employed
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Dataset MBaseline
A MGIN

A MGCN
A MBaseline

S MGraphKernel
S MGIN

S MGCN
S

MUTAG 83.7 ± 8.35 84.07 ± 6.26 70.7 ± 6.89 79.18 ± 9.83 86.23 ± 8.50 86.71 ± 4.67 82.86 ± 10.43
PROTEINS 74.24 ± 3.09 70.97 ± 3.79 73.28 ± 3.22 60.95 ± 0.79 72.50 ± 2.58 68.24 ± 4.39 64.29 ± 2.6
HIV 96.58 ± 0.1 96.86 ± 0.13 96.69 ± 0.06 96.49 ± 0.01 51.00 ± 0.00 96.74 ± 0.09 96.49 ± 0.09
PPA 20.12 ± 0.0 24.05 ± 0.0 16.08 ± 0.0 9.28 ± 0.0 - 64.19 ± 0.0 66.72 ± 0.0
D&D 76.12 ± 2.78 72.22 ± 3.18 70.49 ± 2.13 62.29 ± 2.55 62.39 ± 1.89 62.73 ± 2.23 64.03 ± 2.64
ENZYMES 29.67 ± 5.74 41.78 ± 3.92 31.72 ± 4.54 17.56 ± 1.93 25.00 ± 3.33 28.33 ± 4.24 22.0 ± 3.48
NCI1 66.76 ± 1.98 80.54 ± 1.16 76.85 ± 2.78 50.58 ± 1.02 62.50 ± 1.79 75.55 ± 1.31 65.03 ± 2.43
BACE 68.64 ± 4.68 79.95 ± 2.9 73.5 ± 3.48 54.33 ± 0.17 61.84 ± 0.00 79.82 ± 3.18 61.32 ± 5.07
AIDS 99.07 ± 0.85 95.68 ± 1.53 90.05 ± 2.27 89.2 ± 1.16 99.55 ± 0.52 95.33 ± 1.16 86.65 ± 2.24
moltox21 91.05 ± 0.0 91.31 ± 0.0 90.88 ± 0.0 90.43 ± 0.0 - 90.53 ± 0.0 90.45 ± 0.0
IMDB-B NA NA NA 70.63 ± 3.57 67.10 ± 4.76 70.8 ± 2.81 69.5 ± 2.94
IMDB-M NA NA NA 42.31 ± 4.54 47.00 ± 5.84 45.93 ± 4.19 44.98 ± 4.78
REDDIT-B NA NA NA 58.33 ± 1.18 73.50 ± 2.05 89.05 ± 2.14 86.98 ± 2.52
COLLAB NA NA NA 67.68 ± 0.94 63.92 ± 1.63 69.92 ± 1.09 69.79 ± 1.11
MNIST 24.1 ± 0.33 78.48 ± 0.72 54.03 ± 2.15 9.86 ± 0.01 - 11.74 ± 1.49 21.93 ± 0.35
CIFAR10 25.27 ± 0.6 49.87 ± 0.4 45.75 ± 0.6 10.0 ± 0.0 - 11.13 ± 0.99 13.7 ± 0.62

Table 2: Mean test accuracy and variations of different methods in 16 graph classification datasets.

(a) Attributed accuracy gap (b) Structural accuracy gap

Figure 1: The performance gaps on 16 graph classification datasets are categorized into two types: Ineffective (gray) and Effective (red)
benchmarks. These are sorted in ascending order based on the size of the performance gap. An empirical threshold of 10% is used for
categorization, as observed in the inner box of each figure. This box represents the distribution of the accuracy gap for GCN and GIN.

a baseline model formed by AtomEncoder [Hu et al., 2020]
and MolecularFingerprint [Errica et al., 2020], and solely the
MolecularFingerprint model for the other datasets. Subplots
provide further comparisons of δA of GIN and GCN across
different datasets. Likewise, Figure 1(b) reveals the greatest
structural accuracy gap (δS) among GIN, GCN, SP-GK, WL-
GK, and SM-GK approaches.

From our experimental results, the following observations
and insights are derived:
Observation 1. Most datasets excel in either attributed or
structural performance gaps. Computer vision datasets MNIST
and CIFAR10 showcase significant attributed performance
gaps, attributable to their dependency on positional and color
information of target nodes. Chemical datasets like PPA and
Tox21 display noteworthy structural performance gaps due
to the inadequacy of average degree information for baseline
model predictions, consistent with prior findings [Dwivedi et
al., 2023; Cui et al., 2022; Errica et al., 2020; Hu et al., 2020].
Observation 2. Datasets displaying huge gaps for
both δS and δA, like ENZYMES, BACE, and NCI1,

reinforce the importance of structures and specific subgraph
functions in molecules and compounds. GNNs demonstrate
superior performance across most of the datasets by
effectively capturing both attributed and structural information
simultaneously.
Observation 3. Interestingly, among the social science
datasets, only REDDIT-B displayed a noteworthy performance
gap, indicating a weak correlation between degree information
and task labels. This intriguing observation will be further
explored and investigated in subsequent sections.

2.4 Limitations of Using Performance Gap as
Effectiveness Measurement

In general, half of the 16 graph classification datasets may not
be effective to discriminate baselines and GNNs, by using the
absolute value of performance gaps. It is important to note that
solely relying on the absolute performance gap as an indicator
to assess dataset effectiveness could potentially lead to some
unfairness and overlook certain inherent limitations.

For instance, two binary classification datasets D1 and D2
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have the same performance gap such as 10%, while for D1,
the R(D1,MBaseline) = 80%, R(D1,MGNN) = 90%, and
for D2, the R(D2,MBaseline) = 50%, R(D2,MGNN) = 60%.
It is obvious that the D2 has more complex characteristics
leading to the failures of both methods. In that case, we prefer
that D2 has more potential performance improvements by
using advanced methods, such that it has larger effectiveness.
Another limitation is the lack of consideration of the number
of class labels. Suppose that D1 has 2 labels, and the D2

has 10 labels, the complexity of datasets is different even
when the R(D1,MBaseline) = R(D2,MBaseline) = 80%, and
R(D1,MGNN) = R(D2,MGNN) = 90%.

Therefore, in the following section, we will deliberate on
the determination of a dataset’s suitability for benchmarking
purposes and introduce a novel, unified metric designed to
measure this degree. This metric takes into account not only
the inherent complexity of the dataset and number of class
labels, but also the absolute performance gaps observed among
different approaches.

3 Quantifying the Effectiveness of Benchmark
Datasets

In this section, we introduce our proposed metric designed to
address the limitations of the performance gap (Definition 1).
This metric quantifies the degree to discriminate the ability
of different methods. We then demonstrate the properties of
this new metric and validate it on 16 benchmarks, providing
answers to research questions RQ1 and RQ2.

3.1 Dataset Effectiveness
The new metric is defined as follows and is simply denoted by
E(D). We refer to it as Effectiveness over a dataset D.
Definition 2. Given a graph classification dataset D which
has |Y | classes, and the performance gap δtype(D) between
two methods M1 and M2, the E to quantify the discriminating
degree of M1 and M2 is defined as follows:

E(D) =
∑

type∈{S,A}

|δtype(D)|
R∗(|Y | − 1)

· 1−R∗

1− |Y |−1
, (1)

where R∗ = min(R1, R2), which is the minimal value of two
accuracy values from M1 and M2, denoted by R1 and R2
respectively.

The Definition 2 aggregates two types of effectiveness, each
type of effectiveness is the product of two components. The
first component |δtype(D)|

R∗(|Y |−1) is the absolute changing proportion
of the performance gap which is normalized by the total
number of class labels |Y | − 1. This component varies from 0
to 1, if the worst performance is not less than random guessing.

The second component 1−R∗

1−|Y |−1 , termed the complexity
factor and denoted as λ, ranges between 0 and 1, indicating a
dataset’s relative complexity. The denominator, |Y |−1, reflects
random guessing accuracy, with |Y | being the total task labels.
The numerator represents the gap between the worst method
and perfect classification. If the worst method’s accuracy is
near |Y |−1, λ nears 1, indicating high complexity. If it’s near
100%, λ is close to 0, suggesting a trivial dataset.

Figure 2: Properties illustration of λ and E .

Figure 3: Effectiveness using Accuracy metric and AUC-ROC metric
in terms of structural type and attributed type.

Note that, for binary datasets, R can be AUC-RUC or
accuracy. This is because the AUC-ROC value for random
guessing is 0.5, aligning with 1− |Y |−1 when |Y | = 2.

3.2 Properties of Complexity Factor and
Effectiveness

In this section, we delve into the properties of the complexity
factor λ and how it manages dataset intricacy considering
task label counts. Figure 2 elucidates properties of λ and
effectiveness E via variations in Eq. 1.

Property 1: As the worst method accuracy rises, λ linearly
decreases (Figure 2(a)). Each curve represents a dataset with
task labels from 2 to 10. Essentially, a higher worst method
accuracy means a simpler dataset.

Property 2: A smaller performance gap leads to a
reduced E (Figure 2(b)). As the gap decreases, the dataset’s
distinguishability diminishes.

Property 3: With a constant performance gap, E varies
based on the worst performance values of R1 and R2 (Figure
2(c)). Higher accuracies yield a lower E than lower accuracies.
For instance, a 20% difference in accuracy between two
methods results in a higher E if the accuracies are lower.

Property 4: For datasets D1 and D2 with the same
performance gaps and accuracy, if |Y1| < |Y2|, then E(D1) >
E(D2) (Figure 2(a-c)). A dataset with more classes has a
larger E .

3.3 Effectiveness of Real-world Datasets
We examined the effectiveness E of 16 real-world datasets
using our protocol. Figure 3(a) shows the attributed
effectiveness EA (in grey) and structural effectiveness ES
(in red) for all datasets. In Figure 3(b), we assess E for
binary datasets using the AUC-ROC metric. While E values
are consistent across metrics for most datasets, HIV’s E
jumps from near 0 to 0.4 with AUC-ROC, emphasizing its
suitability for evaluation. Generally, E remains stable across
different metrics. The ranking by effectiveness aligns with
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Figure 4: Correlations between graph property sequences and class labels on 9 real-world datasets.

the performance gap, confirming a high Spearman correlation
between E sequences and their performance gap sequences.

In conclusion, by leveraging the definition of E across
various metrics R and models M, we can gain valuable
insights. These insights aid in the assessment of a
dataset’s fairness and suitability for benchmarking purposes.
Furthermore, this definition guides the selection of appropriate
metrics and models for a given dataset, such as opting for
accuracy or AUC-ROC as a metric.

4 Investigation of Causes of Low Effectiveness
of Datasets

4.1 Correlation Between Graph Properties and
Class Labels

Inspired by [Cui et al., 2022; Errica et al., 2020; Hu et al.,
2020], we hypothesize that for some simple graph properties,
they are highly correlated with class labels. This high
correlation is what allows simple methods to achieve good
accuracy. Therefore, we first examine the correlation between
certain simple graph properties and class labels.

Graph property sequence. We generate graph property
sequences in terms of some basic graph properties such
as number of nodes, average degree, count of cycles, etc.
Suppose we have a non-attribute dataset D with N samples,
i.e., D = {gi}Ni=1, and the corresponding labels Y =
{yi}ni=1, where yi ∈ {0, 1} for a binary classification dataset.
Following this sample sequence, we can generate various
corresponding graph property sequences. For instance, the
average degree sequence, i.e., D = {di}nn=1, where di is
the average degree of the graph sample gi. Similarly, we
construct the average clustering coefficient (CC) sequence,
i.e., CC = {cci}ni=1, where cci is the average clustering
coefficient of gi. Besides these two basic properties, we obtain
sequences of other different graph properties, i.e., edge count
sequence (denoted by Edges), node count sequence (denoted
by Nodes), cycle count sequence (denoted by cyc=k), where k
represents the cycle length, k ∈ {3, 4, 5, 6}.

Correlation analysis between graph property sequences
and label series. Figure 4 shows the correlations between
8 graph properties and labels Y. The correlation of Edges
and Nodes with Y exceeds 0.2 in most datasets, often above
0.4. In molecular datasets like MUTAG, cycle count is
highly correlated with labels, indicating the impact of cyclic
structures. Studies [Chen et al., 2020; Rieck et al., 2019;
Bouritsas et al., 2022] suggest WL kernels and GNNs
struggle to capture substructures, underlining the importance
of analyzing graph properties for method performance.

4.2 Controllable Synthetic Datasets
Real datasets are finite and insufficiently diverse for an
exhaustive exploration of the effects of varying correlations
between different graph properties and labels on effectiveness.
Existing synthetic datasets [Murphy et al., 2019; Tsitsulin
et al., 2022; Chen et al., 2020], present limitations as they
rigidly utilize specific properties as labels, unable to adjust the
correlation between properties and labels.

We introduce a method to generate controllable datasets,
enabling precise modulation of the correlations between
any graph properties and class labels. First, we propose
a technique to generate random variables with a given
correlation coefficient.
Generate correlated random variables with given
coefficients. Suppose each graph property P , and the class
label Y are random variables, the goal is to sample a graph
property sequence P (e.g., CC) and the class label sequence Y
from the distributions of P and Y respectively, which satisfy
a given Pearson correlation coefficient r between the property
and label, i.e., r = Pearson(P,Y).
Theorem 1. Given a set of property variables {Pi}Ki=1, each
Pi follows a Gaussian distribution N (µk, σk) or Uniform
distribution U(ak, bk), and given corresponding Pearson
correlation coefficients {ri}Ki=1 with label variable Y , with
the constraint

∑K
i=1 r

2
i ≤ 1, then we have:

Y = σY

 K∑
i=1

niri + n0

√√√√1−
K∑
i=1

r2i

 , (2)

where σY is any desired standard deviation, and each ni

is mutually independent and follows the same distribution
as the corresponding Pi with the same mean value µi but
with standard deviation equals to 1. (The proof is based on
Cholesky decomposition of a given covariance matrix.)

Figure 5: Generated Y with 11 classes by P2,P2,P3 following
two uniform and one Gaussian distributions with the correlations
r1 = −0.7, r2 = 0.1, r3 = 0.7 respectively.
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Algorithm 1: Controllable dataset construction
1 Input: {rk}Kk=1, number of labels C,
{Pk}Kk=1 ∼ N (µk, σk) or U(ak, bk);

2 Output: Dataset D with size N ;
3 for k = 1 to K do
4 Sample nk ∼ N (0, σk) or U(−

√
3,
√
3);

5 Pk ← µk + σknk or ak+bk
2

+
√

bk−ak
12

nk;
6 end
7 Calculate Y by the Eq. 2 ;
8 Y← ROUND(NORM(Y) ∗ C);
9 D← {(gi, yi)}Ni=1,

10 where each graph gi has properties {Pk[i]}Kk=1, and
corresponding label yi = Y[i];

Inverse graph generation by correlation. By Theorem
1, we can easily generate a desired dataset (includes some
graph properties with specific correlations with class labels)
following the Algorithm 1. In Alg. 1, it is easy to prove that
Pk ∼ N (µk, σk), or Pk ∼ U(ak, bk). The NORM function
is to normalize the Y into 0 to 1 by min-max normalization,
and the ROUND function is to convert Y from decimal to an
integer between 0 and C − 1, to be used as a class label.

The Figure 5 show the precise correlated relationships of
generated Y and each properties P1,P2,and P3 with different
correlation coefficients r1 = −0.7, r2 = 0.1, r3 = 0.7
respectively. We demonstrate the different distributions
of each property. The properties follow three uniform
distributions as shown in the left three boxes, and follow three
normal distributions as shown in the right three boxes.

Construction of two synthetic datasets. Utilizing Theorem
1, we construct two types of binary classification datasets,
specifically Syn-Degree and Syn-CC. These are generated
using Erdos–Renyi (ER) graphs, with a focus on controlling
the average graph degree property D and average clustering
coefficient property CC, respectively. It’s important to note
that Theorem 1 is versatile and can be adapted to various graph
generation processes beyond ER graphs, by defining specific
numerical graph properties. We have created 9 datasets for
each type, with each dataset comprising 4096 graphs. In Syn-
Degree, both rDi and rCC

i range from 0.1 to 0.9. Conversely,
in Syn-CC, all rDi are set to 0, while rCC

i varies from 0.1
to 0.9. Further details on the construction of these synthetic
datasets are available in the supplementary materials, owing
to page constraints.

Under our framework, the two dataset types showed notable
differences in Figure 6. As correlation rises, the accuracy gap
and GIN’s accuracy both increase linearly, with the baseline
mirroring random guessing. For the Syn-Degree dataset,
GIN’s accuracy and the baseline both rise linearly, keeping a
minimal gap. This suggests two things: a model’s prediction
accuracy strongly correlates with the coefficient if it captures a
graph attribute linked to the label, and GIN effectively captures
clustering coefficient and degree information.

Figure 6: Controllable performance gaps by two types of synthetic
datasets.

Regressor Real-world datasets Synthetic-CC datasets
Pearson P-Value Pearson P-Value

Ridge 0.80 ± 0.09 ≤ 1 × 10−6 0.87 ± 0.03 ≤ 1 × 10−6

SVR 0.80 ± 0.09 ≤ 1 × 10−6 0.89 ± 0.04 ≤ 1 × 10−6

RF 0.89 ± 0.03 ≤ 1 × 10−6 0.87 ± 0.06 ≤ 1 × 10−6

Table 3: Summary of regression results

4.3 Effective Prediction of Effectiveness Through
Graph Properties and Statistical Features

Most datasets show strong correlations between graph
properties and labels, prompting us to explore predicting
dataset effectiveness using these properties, which is
computationally cheaper than benchmarking. Drawing from
[Xiao et al., 2022], we split each dataset into 10 distinct
sets, define 26 features for graph classification, and regress
effectiveness using regressors like Random Forest, SVR, and
Ridge regression. Using 16 real-world datasets and 9 Syn-
CC datasets, we allocate 70% of the splits for training and
30% for testing. Regression performance, verified by the
Spearman rank coefficient in Table 3, is based on 10 repeated
experiments. Both real-world and Syn-CC datasets show
that basic graph properties can effectively predict dataset
effectiveness.

5 Conclusions
Our work provides a detailed analysis of graph classification
benchmarks essential for the evaluation and enhancement
of GNN models. We introduced an empirical protocol to
compare the performance of methods like MLPs to GNNs
on certain datasets. Our novel Effectiveness metric serves as
a pivotal tool for dataset validation in benchmarking. By
devising a method to generate synthetic datasets, we can
precisely control the correlation between graph properties
and task labels, addressing the issue of low effectiveness in
some benchmarks. Our efforts play a significant role in the
selection of impactful benchmarks, paving the way for the
development of robust GNN models and further advancements
in graph learning research.
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