A Logic for Reasoning about Aggregate-Combine Graph Neural Networks

Pierre Nunn¹, Marco Sälzer², François Schwarzentruber¹ and Nicolas Troquard³

¹University of Rennes, IRISA, CNRS, France
²Theoretical Computer Science / Formal Methods, University of Kassel, Germany
³Gran Sasso Science Institute, L’Aquila, Italy

pierre.nunn@ens-rennes.fr, marco.saelzer@uni-kassel.de, francois.schwarzentruber@ens-rennes.fr, nicolas.troquard@gssi.it

Abstract

We propose a modal logic in which counting modalities appear in linear inequalities. We show that each formula can be transformed into an equivalent graph neural network (GNN). We also show that a broad class of GNNs can be transformed efficiently into a formula, thus significantly improving upon the literature about the logical expressiveness of GNNs. We also show that the satisfiability problem is PSPACE-complete. These results bring together the promise of using standard logical methods for reasoning about GNNs and their properties, particularly in applications such as GNN querying, equivalence checking, etc. We prove that such natural problems can be solved in polynomial space.

1 Introduction

Graph Neural Networks (GNNs) perform computations on graphs or on pairs of graphs and vertices, referred to as pointed graphs. As a prominent deep learning model, GNNs find applications in various domains such as social recommendations [Salamat et al., 2021], drug discovery [Xiong et al., 2021], material science and chemistry [Reiser et al., 2022], knowledge graphs [Ye et al., 2022], among others (see Zhou et al. [2020] for an overview). This growing adoption of GNNs comes with certain challenges. The use of GNNs in safety-critical applications sparks a significant demand for safety certifications, given by dependable verification methods. Furthermore, human understandable explanations for the behaviour of GNNs are needed in order to build trustworthy applications, coming with the need for a general understanding of the capabilities and limitations inherent in specific GNN models.

In general, there are two approaches enabling rigorous and formal reasoning about GNNs: formal verification [Huang et al., 2020] and formal explanation methods [Marques-Silva and Ignatiev, 2022] for neural network models such as GNNs. Formal verification procedures are usually concerned with the sound and complete verification of properties like “Does GNN \(A \) produce an unwanted output \(y \) in some specified region \(Y \)?” (reachability) or “Does GNN \(A \) behave as expected on inputs from some specified region \(X \)?” (robustness). Formal explainability methods are concerned with giving answers for questions like “Is there a minimal, humanly interpretable reason that GNN \(A \) produces output \(y \) given some input \(x \)?” (abductive explanations). In both cases, formal verification and formal explanation, logical reasoning offers an all-purpose tool. For example, the following algorithm enables addressing correspondence questions: given some GNN \(A \), produce a logical formula \(\varphi \) such that \([\sigma] = \llbracket \varphi \rrbracket\) where \([\sigma] = \llbracket \sigma \rrbracket\) is the class of (pointed) graphs recognized by the GNN \(A \), and \([\varphi] = \llbracket \varphi \rrbracket\) is the class of pointed graphs in which \(\varphi \) holds. Informally put, the goal is to compute a formula \(\varphi \) that completely characterizes the class of (pointed) graphs recognized by GNN \(A \). Given this, one can then investigate GNNs purely based on this logical characterization. Unfortunately, the synthesis of a formula of a logic, say first-order logic (FO) or modal logic (ML), that captures a semantic condition can be notoriously challenging (e.g., Pinchinat et al. [2022]).

Barceló et al. [2020] have shown that any formula of Graded Modal Logic (GML) can be transformed into a GNN. Conversely, they have shown that given a GNN that is expressible in first-order logic (FO), there exists an equivalent formula in GML. Doing so, they also characterized GML as being the intersection of FO and GNNs. While their result is promising, there is no full logical characterization of what a GNN can express.

That is why we define a logic called \(K^\# \) combining counting modalities and linear programming, which is expressive enough to capture a broad and natural class of GNNs. As pictured in Figure 1, it is more expressive than graded modal logic [de Rijke, 2000] and, thus, \(K^\# \) captures a broader class of GNNs than previously identified in Barceló et al. [2020]. Furthermore, we show that the satisfiability problem of \(K^\# \) is PSPACE-complete, leading to immediate complexity results for various formal verification and explainability problems as reachability, robustness, or producing abductive explanations.

Figure 1: Expressivity of our logic \(K^\# \) compared to modal logic (ML), graded modal logic (GML) and first-order logic (FO).
Overview of the Main Contributions. We present the logic $K\#$ which captures Aggregate-Combine Graph Neural Networks [Barceló et al., 2020; Gilmer et al., 2017], where the aggregation function is the sum, and the combination and final classification functions are linear functions with integer parameters, and truncated ReLU ($\max(0, \min(1, x))$) is used for the activation function. We refer to these GNNs simply as GNNs in the paper. In particular, we show that:

- for each formula φ of $K\#$ there is a GNN A recognizing exactly the same pointed graphs as φ (Theorem 1),
- for each GNN A there is a formula φ of $K\#$ recognizing exactly the same pointed graphs as A (Theorem 2).

These results significantly extend the class of GNNs for which a logical characterization is known from Barceló et al. [2020]. Furthermore, we provide an algorithm for the satisfiability problem of $K\#$, proving that the problem is PSPACE-complete (Theorem 3). This also provides algorithmic solutions for the following problems: given a GNN A and a logical formula φ, decide whether (P1) $[[A]] \equiv [[\varphi]]$, (P2) $[[A]] \subseteq [[\varphi]]$, (P3) $[[\varphi]] \subseteq [[A]]$, (P4) $[[\varphi]] \cap [[A]] \neq \emptyset$.

Example 1. Consider a setting where GNNs are used to classify users in a social network. Assume we have a GNN A which is intended to recommend exactly those users who have at least one friend who is a musician and at most one-third of their friends play the tuba. We call this the few-tubas property. Given our translation from A to a $K\#$ formula, we can answer questions like

A “Is each recommended person a person that has the few-tubas property?”

B “Does any recommended person not have the few-tubas property?”

C “Is any person that befriends a musician but also too many tuba players recommended?”

D “Is it possible to recommend a person that does not have the few-tubas property?”

by representing the corresponding properties as $K\#$ formulas and then solving problem P1 for A, P2 for B, P3 for C and P4 for D. Question A corresponds to giving an abductive explanation, as a positive answer would indicate that “at least one musician friend and not too many tuba playing friends” is a (minimal) reason for “recommended person.” In the same manner, B and C are reachability properties and D is a robustness property.

Outline. In Section 2 we recall the necessary preliminaries on graph neural networks. In Section 3, we define the logic $K\#$. In Section 4, we study the correspondence between GNNs and $K\#$. In Section 5, we discuss the satisfiability problem of $K\#$. Section 6 addresses the complexity of the problems P1–P4. Section 7 is about the related work, and Section 8 concludes.

2 Background on GNNs

In this paper, we consider Aggregate-Combine GNNs (AC-GNN) [Barceló et al., 2020], also sometimes called message passing neural networks [Gilmer et al., 2017].
Example 2. Consider a layer defined by \(\text{agg}(X) := \sum_{x \in X} x \) and
\[
\text{comb}((x, x'), (y, y')) := \left(\frac{\sigma(x + 2x' + 3y + 4y' + 5)}{\sigma(6x + 7x' + 8y + 9y' + 10)} \right).
\]
Suppose as in Figure 2, that vertex \(u \) has two successors named \(v \) and \(w \). Here we suppose that feature vectors are of dimension 2: \(x_{t-1}(u), x_{t-1}(v), x_{t-1}(w) \in \mathbb{R}^2 \). First, \(\text{agg}((\{x_{t-1}(v), x_{t-1}(w)\})) = x_{t-1}(v) + x_{t-1}(w) \). Second, with our example of combination function we get:
\[
x_1(u) := \left(\frac{\sigma(x_{t-1}(u)_1 + 2x_{t-1}(u)_2 + 3y_1 + 4y_2 + 5)}{\sigma(6x_{t-1}(u)_1 + 7x_{t-1}(u)_2 + 8y_1 + 9y_2 + 10)} \right).
\]
Figure 3 explains how a GNN works overall: the state is updated at each layer; at the end the function \(\text{cls} \) says whether each vertex is recognized (output 1) or not (output 0).

Let \(A = (L_1, \ldots, L_L, \text{cls}) \) be a GNN. We define the semantics \(\mathcal{M}(A) \) of \(A \) as the set of pointed graphs \((G, u) \) such that \(\text{cls}(x, t, l(u)) = 1 \).

3 The Logic \(K\# \)

In this section, we describe the syntax and semantics of \(K\# \) and its fragment \(K\#^{-1} \).

3.1 Syntax

Consider a countable set \(Ap \) of propositions. We define the language of \(K\# \) as the set of formulas generated by the following BNF:
\[
\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \xi \geq 0
\]
\[
\xi ::= c \mid 1 \varphi \mid \# \varphi \mid \xi + \xi \mid c \times \xi
\]
where \(p \) ranges over \(Ap \), and \(c \) ranges over \(\mathbb{Z} \). Atomic formulas are propositions \(p \), inequalities and equalities of linear expressions. We consider linear expressions over \(1_p \) and \(\# \). The number \(1_p \) is equal to 1 if \(\varphi \) holds in the current world and equal 0 otherwise. The number \#\(\varphi \) is the number of successors in which \(\varphi \) hold.

The language seems strict but we write \(\xi_1 \leq \xi_2 \) for \(\xi_2 - \xi_1 \geq 0 \), and \(0 < \xi \leq \xi \), etc. Recall that modal logic itself extends propositional logic with a modal construction \(\Box \varphi \) whose semantics is the ‘the formula holds in all successors’. Logic \(K\# \) is an extension of modal logic since we can define \(\Box \varphi := (\#(\neg \varphi) \leq 0) \): the number of successors in which \(\varphi \) does not hold equals 0. We write \(\top \) for a tautology.

Example 3. The few-tuba property of Example 1, users (nodes) who have at least one friend who is a musician and at most one-third of their friends play the tuba, can be represented by the formula \((\#\text{musician} \geq 1) \land (\# \top \geq 3 \times \#\text{tubaplayer}) \).

The set of subformulas, \(sub(\varphi) \) is defined by induction on \(\varphi \): \(sub(p) = \{p\} \), \(sub(\neg \varphi) = \{\neg \varphi\} \cup sub(\varphi) \), \(sub(\varphi \lor \psi) = \{\varphi \lor \psi\} \cup sub(\varphi) \cup sub(\psi) \), and \(sub(\xi \geq 0) = \{\xi \geq 0\} \cup \bigcup \{ sub(\psi) \mid 1_p \lor \#\psi \text{ in } \xi \} \).

The modal depth of a formula, \(md(\varphi) \) and the modal depth of an expression, \(md(\xi) \) are defined by mutual induction on \(\varphi \) and \(\xi \): \(md(p) = md(c) = 0 \), \(md(\neg \varphi) = md(1_p) = md(\varphi) \), \(md(\xi \geq 0) = md(k \times \xi) = md(\xi), md(\# \varphi) = md(\varphi) + 1 \), and \(md(\xi_1 \land \xi_2) = \max(md(\xi_1), md(\xi_2)) \). As in modal logic, modalities are organized in levels.

Example 4. \(md(1_p + \# \# \leq 4) \) is at level 2, \(md(1_p = \# \# \leq 4) \) is at level 1, while the expression \#\(\#p \) is not at level 2.

In this paper, a formula is represented by a DAG (directed acyclic graph) instead of just a syntactic tree. DAGs, contrary to syntactic trees, allow the reuse of subformulas.

Example 5. The DAG depicted in Figure 4(a), in which the subformula \((p \land q) \lor (\#(p \land q) \geq 1_p \land q) \).

However, we disallow DAGs reusing arithmetical expressions.

Example 6. The formula \((2 + \#p \geq 1_p) \land (2 + \#p \geq 1_r) \) cannot be represented by the DAG shown in Figure 4(b) which refers to the expression \#\(\#p \) twice.

Formally, the fact that arithmetical expressions are not reused in DAGs representing formulas is reflected by the simple property that the nodes representing arithmetical expressions have in-degree 1.

Definition 2. A DAG of a formula is a graph in which nodes for \(c, 1_p, \#\varphi, \xi, \#\varphi \times \xi \) have in-degree 1.

The reason for not allowing reusing arithmetical expressions in the DAG representation of formulas is technical. Firstly, as demonstrated by Theorem 2, the transformation of GNNs into formulas does not necessitate the reusing of arithmetical subexpressions but only subformulas. Second, we will need to efficiently transform formulas in DAG representation into formulas in tree representation (Lemma 1). For this result, we need DAGs wherein only subformulas are reused, excluding the reuse of arithmetical expressions. The size \(|\varphi| \) of a \(K\# \) formula \(\varphi \) in DAG form is the number of bits needed to represent the DAG.

Figure 4: DAG representation of formulas. (a) We allow for reusing subformulas. (b) We disallow for reusing arithmetical expressions.
The logic $K^{\#}$. is the syntactic fragment of K in which constructions $^1\varphi$ are disallowed.

3.2 Semantics

As in modal logic, a formula φ is evaluated in a pointed graph (G, u) (also known as pointed Kripke model). We define the truth conditions $(G, u) \models \varphi$ (φ is true in u) by

$$(G, u) \models \varphi \quad \text{if} \quad \ell(u)(p) = 1,$$

$$(G, u) \models \neg \varphi \quad \text{if} \quad \text{it is not the case that} \quad (G, u) \models \varphi,$$

$$(G, u) \models \varphi \wedge \psi \quad \text{if} \quad (G, u) \models \varphi \quad \text{and} \quad (G, u) \models \psi,$$

$$(G, u) \models \xi \geq 0 \quad \text{if} \quad \models \xi|_{G, u} \geq 0,$$

and the semantics $\models \xi|_{G, u}$ (the value of ξ in u) of an expression ξ by mutual induction on φ and ξ as follows.

$$\models \xi|_{G, u} = c,$$

$$\models [\xi_1 + \xi_2]|_{G, u} = \models \xi_1|_{G, u} + \models \xi_2|_{G, u},$$

$$\models [\xi \times \xi]|_{G, u} = \models \xi|_{G, u},$$

$$\models [1]^\# \varphi|_{G, u} = \begin{cases} 1 & \text{if} \quad (G, u) \models \varphi \\ 0 & \text{else} \end{cases},$$

$$\models [\# \varphi]|_{G, u} = \{v \in V \mid (u, v) \in E \quad \text{and} \quad (G, v) \models \varphi\}.$$

We illustrate it in the next example.

Example 7. Consider the pointed graph G, u shown in Figure 5. We have $(G, u) \models p \land (\# p \geq 2) \land \#(\# p \geq 1) \leq 1$. Indeed, p holds in u, u has (at least) two successors in which $\neg p$ holds. Moreover, there is (at most) one successor which has at least one p-successor.

We define $\models \varphi$ as the set of the pointed graphs G, u such that $(G, u) \models \varphi$. Furthermore, we say that φ is satisfiable when there exists a pointed graph G, u such that $(G, u) \models \varphi$.

3.3 Relationship with Other Logics

Logic $K^{\#}$ is also an extension of graded modal logic. Graded modal logic [Fattorosi-Barnaba and Caro, 1985] extends classical modal logic by offering counting modality constructions of the form $\diamondsuit^k \varphi$ which means there are at least k successors in which φ holds. Logic $K^{\#}$ is more expressive than graded modal logic since $\diamondsuit^k \varphi$ is rewritten in $k \leq \# \varphi$. In fact, the expressivity of $K^{\#}$ goes beyond FO.

Proposition 1. There are some properties that can be expressed in $K^{\#}$ that cannot be expressed in FO.

Proof. The property ‘there are more p-successors than q-successors’ can be expressed in logic $K^{\#}$ by the formula $\# p \geq \# q$, but it cannot be expressed in first-order logic, and thus not in graded modal logic. This is proven via an Ehrenfeucht-Fraïssé game (see [Nunn et al., 2024]).

4 Correspondence

In this section, we lay the foundations for expressing $K^{\#}$-formulas using GNNs, and vice versa.

4.1 From Logic to GNNs

We start by showing that each $K^{\#}$-formula is captured by some GNN. The proof follows the same line as Prop 4.1 in Barceló et al. [2020]). However, our result is a generalization of their result since $K^{\#}$ is more expressive than graded modal logic.

Theorem 1. For every $K^{\#}$-formula φ, we can compute in polynomial time wrt. $|\varphi|$ a GNN A_φ such that $[\varphi] = [A_\varphi]$.

Proof. Let φ be a $K^{\#}$ formula with occurring propositions p_1, \ldots, p_m. Let $(\varphi_1, \ldots, \varphi_n)$ be an enumeration of the subformulas of φ such that $\varphi_1 = p_i$ for all $i \leq m$, if $\varphi_i \in \text{sub}(\varphi_j)$ then $i \leq j$ and $\varphi_i \neq \varphi$. W.l.o.g. we assume that all $\xi \geq 0$ subformulas are of the form $\sum_{j \in J} k_j \cdot \varphi_j - e \geq 0$ for some index sets $J, J' \subseteq \{1, \ldots, n\}$. We build A_φ in a stepwise fashion. Since A_φ is a GNN it is completely defined by specifying the combination function comb_i for each layer l_i with $i \in \{1, \ldots, n\}$ of A_φ as well as the classification function.

The output dimensionality of each comb_i is n. Let comb_1, namely the first combination in A_φ, have input dimensionality $2m$ computing $\text{comb}_1(x, y) = (x, 0, \ldots, 0)$. Informally, this ensures that state x_1 has dimensionality n where the first m dimensions correspond to the propositions p_1 and all other are 0. Let $\text{comb}_i(x, y) = \delta(xC + yA + b)$ where C, A are $n \times n$ and b is n dimensional and specified as follows. All cells of C, A and b are zero except for the case $C_{ii} = 1$ if $i \leq m$, the case $C_{ij} = -1, b_i = 1$ if $\varphi_i = \neg \varphi_j$, the case $C_{ij} = C_{ji} = 1$ if $\varphi_i = \varphi_j \lor \varphi_i$ and the case $C_{ij} = k_i, A_{ij} = k_j, b_i = -c + 1$ for all $j \in J, j' \in J'$ if $\varphi_i = \sum_{j \in J} k_j \cdot \varphi_j + \sum_{j' \in J'} k_j' \cdot \# \varphi_j' - c \geq 0$. This means that all comb_i are equal. The classification function cls is given by $\text{cls}(x) = x_n \geq 1$.

The correctness of the construction is proven in [Nunn et al., 2024].

Furthermore, the number of layers of an equivalent GNN can be reduced to be proportional to $\text{md}(\varphi)$. In that case, however, the corresponding transformation is a priori not computable in poly-time (see [Nunn et al., 2024]).

Example 8. Consider the formula $\varphi = \neg(p \lor (8 \leq 3 \times \# q))$. We define the following GNN A with 2 layers which is equivalent to φ as follows. We first consider the following subformulas of φ in that order:

<table>
<thead>
<tr>
<th>φ_1</th>
<th>φ_2</th>
<th>φ_3</th>
<th>φ_4</th>
<th>φ_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>$8 \leq 3 \times # q$</td>
<td>$\varphi_1 \lor \varphi_3$</td>
<td>$\neg \varphi_4$</td>
</tr>
</tbody>
</table>

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3535
The combination function for both layers is $\text{comb}(x, y) = \sigma(xC + yA + b)$ where

$$
C = \begin{pmatrix}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}, \quad A = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
$$

and $b = (0 \ 0 \ -7 \ 0 \ 1)$. The role of the two first column coordinates are to keep the current values of p and q in each vertex of the graph (hence the identity submatrix in C w.r.t. the first two columns and rows).

The third column is about subformula $8 \leq 3 \times \#q$. The coefficient 3 in A is at the second row (corresponding to q). The third column of $xC + yA + b$ equals 1 exactly when $3 \times \#q$ should hold. The fourth column $\sigma(xC + yA + b)$ is $\sigma(x_1 + x_3)$ and equals 1 iff $x_1 = 1$ or $x_3 = 1$. The last column handles the negation $\neg \varphi_A$. The last column of $\sigma(xC + yA + b)$ is $\sigma(1 - x_4)$.

4.2 From GNNs to Logic

Now, we shift our attention to show how to compute a $K\#$-formula that is equivalent to a GNN. Note that this direction was already tackled by Barceló et al. [2020] for graded modal logic for the subclass of GNNs that are FO-expressible, but their proof is not constructive. Here we give an effective construction. Furthermore, the construction can be done in poly-time in $|A|$. This point is crucial: it means that we can transform efficiently a GNN into a logical formula and then perform all the reasoning tasks in the logic itself.

Theorem 2. Let A be a GNN. We can compute in polynomial time w.r.t. $|A|$ a $K\#$-formula φ_A, represented as a DAG, such that $[\varphi_A] = [\varphi_A]$.

Proof. Let A be a GNN with layers l_1, \ldots, l_k where comb_k has input dimensionality $2m_k$, output dimensionality n_k and parameters C_k, A_k and b_k and $\text{cls}(s) = a_1 x_1 + \ldots + a_n x_n \geq 0$. We assume that $n_k = n_{k-1}$ for $i \geq 2$, meaning a well defined GNN. We build a formula φ_A over propositions p_1, \ldots, p_m inductively as follows. Consider layer l_i. We build formulas $\varphi_{1,j} = \sum_{k=1}^{m} a_k (C_k)_{j,k} + \#p_k (A_k)_{j,k} + b_j \geq 1$ for each $j \in \{1, \ldots, n_i\}$. Now, assume that $\varphi_{i-1,1}, \ldots, \varphi_{i-1,n_i}$ are given. Then, we build formulas $\varphi_{i,j} = \sum_{k=1}^{m} a_k (C_k)_{j,k} + \#p_k (A_k)_{j,k} + b_j \geq 1$. In the end, we set $\varphi_A = \psi$ where $\psi = p_1 \varphi_{1,1} + \cdots + p_n \varphi_{1,n}$.

Let G, v be some pointed graph. The correctness of our construction is straightforward: due to the facts that all parameters in A are from \mathbb{Z}, the value $\varphi_A(u)$ for each u in G is a vector of 0 and 1 and that each comb_k in A applies the truncated ReLU pointwise, we have for all $i \in \{1, \ldots, k\}$ that the value of $x_i(v)$ is again a vector of 0 and 1. Therefore, we can capture each x_i using a sequence of $K\#$-formulas as done above. In combination, we have that φ_A exactly simulates the computation of A.

The polynomial time of this inductive construction is straightforward: we represent from beginning to end the inductively built (sub)formulas in a single DAG. This implies that in intermediate steps we do not have to rewrite already built subformulas $\varphi_{i-1,k,b}$, but can simply refer to them. Thus, in each step of the inductive procedure we only need $n_i \cdot m_i$ many steps to build all corresponding subformulas. As all n_i, m_i and k are given by A, we have that the procedure is polynomial in the size of A as long as we represent φ_A respectively its subformulas as a DAG.

Example 9. The idea is to build formulas that characterize the state x_i (which is the output at layer t if $t \geq 1$, and also the input at layer $t+1$). Initially, x_i is the state whose values come the truth values of the atomic propositions. We suppose we have only two propositions p_1, p_2. Hence, the two formulas that represent state x_0 are $\varphi_{01} = p_1$ and $\varphi_{02} = p_2$.

Suppose that the two layers are given by the same combination and aggregation functions:

$$
x_1(u) = \text{comb}(x_0(u), \text{agg}([[x_0(v) | v \in E]]))
$$

and

$$
x_2(u) = \text{comb}(x_1(u), \text{agg}([[x_1(v) | v \in E]]))
$$

with aggregation function $\text{agg}(X) = \sum_{x \in X} x$, and combination function $\text{comb}((x, x'), (y, y')) = \begin{pmatrix}
\sigma(x + 2x' - 3y + 4y' + 5) \\
\sigma(6x + 7x' + 8y - 9y' + 10)
\end{pmatrix}$.

The formulas that represent the state x_1 are formula $\varphi_{11} = 1_{\varphi_{01}} + 2 \times 1_{\varphi_{02}} - 3 \#\varphi_{01} + 4 \#\varphi_{02} + 5 \geq 1$ and formula $\varphi_{12} = 6 \times 1_{\varphi_{01}} + 7 \times 1_{\varphi_{02}} + 8 \#\varphi_{01} - 9 \#\varphi_{02} + 10 \geq 1$.

The formulas that represent the state x_2 are formula $\varphi_{21} = 1_{\varphi_{11}} + 2 \times 1_{\varphi_{12}} - 3 \#\varphi_{11} + 4 \#\varphi_{12} + 5 \geq 1$ and formula $\varphi_{22} = 6 \times 1_{\varphi_{11}} + 7 \times 1_{\varphi_{12}} + 8 \#\varphi_{11} - 9 \#\varphi_{12} + 10 \geq 1$.

Finally, suppose that the classification function is given by $\text{cls}(s(x, x')) = 5x - 3x' \geq 1$. So the formula $tr(A)$ that represents the GNN A is $5 \times 1_{\varphi_{21}} - 3 \times 1_{\varphi_{22}} \geq 1$.

5 Complexity of the Logic

In this section, we address the complexity of the satisfiability problem of the logic $K\#$. Specifically, we prove that it is PSPACE-complete (Theorem 3). Additional details are available in [Nunn et al., 2024].

We know from Ladner [1977] that the satisfiability problem of the standard modal logic K is PSPACE-hard, and we observed before that $K\#$ is an extension of logic K since we can define $\Box : = (\#(\neg \varphi) \leq 0)$ and we are working with graphs whose relation (represented by the set E of edges) is unconstrained. Hence, we have:

Proposition 2. The satisfiability problem of the logic $K\#$ is PSPACE-hard.

To show that the satisfiability problem of $K\#$ is also in PSPACE, we are going to follow a strategy illustrated in Figure 6:

1. First we show that the problem can be reduced efficiently to the satisfiability problem of $K\#$ with the formulas represented as trees (and not arbitrary DAGs). Let us call this problem K_{tree}-sat. This will be Lemma 1.
Lemma 2

\[K^\#\text{-sat} \rightarrow K_{\text{tree}}^\#\text{-sat} \rightarrow K_{\text{tree}}^\#\text{-1-sat} \rightarrow K^\#\text{-sat} \]

EML-sat [Demri and Lugiez, 2010]

Figure 6: Schema of the proof to establish the PSPACE upper bound of the satisfiability problem of \(K^\# \). Arrows are poly-time reductions.

2. Second, we show that \(K_{\text{tree}}^\#\text{-sat} \) can be reduced efficiently to the satisfiability problem of \(K^\#\text{-1} \) with formulas represented as trees. This will be Lemma 2.

3. Third, we conclude by simply observing that \(K_{\text{tree}}^\#\text{-1} \) can be seen as fragment of Extended Modal Logic (EML) introduced by Demri and Lugiez [2010], whose satisfiability problem is in PSPACE.

It is sufficient to establish an upper-bound on the complexity of \(K^\# \), which is stated in the next proposition.

Proposition 3. The satisfiability problem of the logic \(K^\# \) is in \(\text{PSPACE} \).

The initial step in both proofs of Lemma 1 and Lemma 2 shares the same idea. Given a subformula \(\varphi \) or arithmetic subexpression \(1_{p} \), we introduce a fresh propositional variable \(p_{\varphi} \). The variable can then be used as a shortcut, or used in a shortcut, to refer to the truth (resp. value) of the original subformula (resp. arithmetic subexpression). An adequate formula is then added to ‘factorize’ the original subformula or arithmetic subexpression, and enforced at every ‘relevant’ world of a model to capture the intended properties of the transformations. To this end, we can rely on the modality \(\Box^{m} \varphi \), simply defined as \(\Box^{m} \varphi := \bigwedge_{0 \leq i \leq m} \Box^i \varphi \), with \(m \) being the modal depth of the original formula.

To prove Proposition 3, we first show that we can efficiently transform a \(K^\# \) formula (represented as a DAG) into an equi-satisfiable \(K^\# \) formula which is represented as a tree.

For every node of the DAG that is a formula, we introduce a fresh proposition. Starting from the leaves of the DAG, we replace every subformula \(\psi \) with its corresponding proposition \(p_{\psi} \) which will simulate the truth of \(\psi \). As we go towards the root, we replace \(\psi \) with \(p_{\psi} \), and we add a formula of the form \(\Box^{m} (p_{\psi} \leftrightarrow \psi') \), where \(\psi' \) is a syntactic variant of \(\psi \), using the previously introduced fresh variables in place of the original formulas. Since the root is a formula (as opposed to an arithmetic expression), we end with a conjunction of \(\Box^{m} (p_{\psi} \leftrightarrow \psi') \) formulas, and a DAG consisting of only one node with the proposition \(p_{\psi} \) which simulates the original formula. Since we are not duplicating arbitrary formulas, but only propositional variables, this process ensures that the size of the new formula (as a string or as a tree) remains polynomial in the size of the DAG. The idea is similar to Tseitin transformation [Tseitin, 1983].

Example 10. Consider the DAG depicted on Figure 4(a). We introduce the propositional variables \(p_{p}, p_{q}, p_{\lambda}, p_{\leq}, \) and \(p_{\psi} \), each corresponding to a node of the DAG denoting a subformula. The formula is equi-satisfiable with the formula containing the following conjuncts: \(p_{\psi}, \Box^{1} (p_{p} \leftrightarrow p), \Box^{1} (p_{q} \leftrightarrow q), \Box^{1} (p_{\lambda} \leftrightarrow p_{p} \land p_{q}), \Box^{1} (p_{\geq} \leftrightarrow \# p_{\lambda} \leq 1_{p_{\psi}}), \) and \(\Box^{1} (p_{\psi} \leftrightarrow p_{\lambda} \lor p_{2}) \). For the formula to be true, \(p_{\psi} \) must be true, and so must be \(p_{\lambda} \) or \(p_{2} \), and so on.

The previous example explains the idea of the proof in order to efficiently transform formulas represented as arbitrary DAGs into equi-satisfiable formulas represented as tree. The following lemma states that result as a reduction.

Lemma 1. The satisfiability problem of the logic \(K^\# \) reduces to \(K_{\text{tree}}^\#\text{-sat} \) in poly-time.

Now, we show that \(\chi \) expressions can be removed efficiently and in a satisfiability-preserving way. Technically, \(\chi \) expressions are replaced by a counting modality, counting successors with a fresh proposition \(p_{\chi} \), which artificially simulates the truth of \(\chi \).

Example 11. We consider the formula \(1_{\chi} \geq 1 \). We introduce a fresh propositional variable \(p_{\chi} \) and replace the \(1_{\chi} \) with a counting modality \(\# p_{\chi} \). Hence, we simply rewrite the \(K^\# \) formula into the \(K_{\text{tree}}^\#\text{-1} \) formula \(\# p_{\chi} \geq 1 \). We then add a subformula that characterizes the fact that counting \(p_{\chi} \)-worlds simulates the value of \(1_{\chi} \). For that, we say that if \(\chi \) holds, then there must be exactly one \(p_{\chi} \)-successor and if \(\chi \) does not hold then there must be no \(p_{\chi} \)-successor. At the end, the formula \(1_{\chi} \geq 1 \) is rewritten into the \(K_{\text{tree}}^\#\text{-1} \) formula:

\[
(\# p_{\chi} \geq 1) \land \Box^{=0} ((\chi \rightarrow \# p_{\chi} = 1) \land (\neg \chi \rightarrow \# p_{\chi} = 0)).
\]

The previous example explains the idea of the proof in order to get rid of \(1_{\chi} \) expressions. The following lemma states that result as a reduction.

Lemma 2. When formulas are represented as trees, the satisfiability problem of the logic \(K^\# \) reduces to the satisfiability problem of \(K_{\text{tree}}^\#\text{-1} \) in poly-time.

The logic \(K_{\text{tree}}^\#\text{-1} \) can be seen as a fragment of the logic EML introduced by Demri and Lugiez [2010], where formulas are represented as strings (which have the same size as their syntactic tree representation), and whose satisfiability problem is in PSPACE. Together with Lemma 1 and Lemma 2, this proves Proposition 3. Proposition 2 and Proposition 3 allow us to conclude.

Theorem 3. The satisfiability problem of the logic \(K^\# \) is PSPACE-complete.

Since \(\text{coPSPACE} = \text{PSPACE} \), the validity and unsatisfiability problems of \(K^\# \) formulas are also PSPACE-complete. This will be instrumental in the next section.

6 Complexity of Reasoning about GNNs

We are now ready to wrap up algorithmic results for reasoning about GNNs.

Corollary 1. When considering GNNs, the problems P1–P4 are in \(\text{PSPACE} \).

Proof. Let us prove it for P1. For the other problems, the principle is similar. Given \(A, \varphi \), we can check that \(\langle [A] \rangle = \langle [\varphi] \rangle \), by computing the \(K^\# \)-formula \(tr(A) \leftrightarrow \varphi \) and then
Theorem 4. Problems P1–P4 are PSPACE-complete.

Proof. Membership comes from Corollary 1. Hardness follows directly from the PSPACE-hardness of the satisfiability/unsatisfiability/validity of a $K^\#-$formula (cf. Theorem 3). Consider A_{all} a GNN that accepts all graphs, and A_{none} a GNN that rejects all graphs. Consider the following polytime reductions:

- From validity of φ to P1: $[[A_{all}]] = [[[\varphi]]].$
- From validity of φ to P2: $[[A_{all}]] \subseteq [[[\varphi]]].$
- From unsatisfiability of φ to P3: $[[\varphi]] \subseteq [[[A_{none}]]].$
- From satisfiability of φ to P4: $[[\varphi]] \cap [[[A_{all}]]] \neq \emptyset.$

7 Related Work

The links between graded modal logic [Fattorosi-Barnaba and Caro, 1985] and GNNs have already been observed in the literature [Barceló et al., 2020; Grohe, 2021]. We know from Barceló et al. [2020] that a GNN expressible in first-order logic (FO) is also captured by a formula in graded modal logic. Nonetheless, graded modal logic has significant limitations as it cannot represent fundamental arithmetic properties essential to GNN computations, especially those that are not expressible in first-order logic (FO). In a similar vein of finding logical counterparts of GNNs, Cucala et al. [2023] identify a class of GNNs that corresponds to Datalog. Many works combine modal/description logic and quantitative aspects: counting (see, Areces et al., 2010; Dérian and Liguier, 2010; Hampson, 2016; Baader et al., 2020), or probabilities [Shirazi and Amir, 2007]. Galliani et al. [2023] extend the basic description logic ALC with a new operator to define concepts by listing features with associated weights and by specifying a threshold. They prove that reasoning wrt to a knowledge-base is EXPTIME-complete. Linear programming and modal logic have already been combined to solve the satisfiability problem of graded/probabilistic modal logic [Snell et al., 2012]. Our logic $K^\#,$ can be seen as a ‘recursification’ of the logic used in Sälzer and Lange [2022]. They allow for counting successors satisfying a given feature, and not any subformula. Interestingly, they allow for counting also among all vertices in the graph (sort of counting universal modality). Their logic is proven to be undecidable by reduction from the Post correspondence problem. Contrary to our setting, they use their logic only to characterize labeled graphs, but not to give a back and forth comparison with the GNN machinery itself.

There are different ways to address explanation and verification of GNNs. One approach is to use GNNs, which are explainable by design as considered by Müller et al. [2022]. This is of course a deep debate: using models easy to use for learning, versus interpretable models [Rudin, 2019]. The choice depends on the target application. Yuan et al. [2023] provide a survey on methods used to provide explanations for GNNs by using black-box techniques. Instance-level explanations explain why a graph has been recognized by an GNN; model-level ones how a given GNN works. There are also methods based on Logic Explained Networks and variants to generate logical explanation candidates φ [Azzolin et al., 2022]. Once a candidate is generated we could imagine to use our problem P1 (given in the introduction) to check whether $[[A]] = [[[\varphi]]], and thus being able to fully synthesize a trustworthy explanation. The logic $K^\#$ and the results presented in this paper are thus precious tools to assist in the search of model-level explanations of GNNs.

8 Conclusion and Outlook

We presented logic $K^\#$, capturing a broad and natural class of GNNs. Furthermore, we proved that the satisfiability problem of $K^\#$ is PSPACE-complete, leading to direct practical perspectives to solve formal verification and explanation problems regarding this class of GNNs.

There are several directions to go from here. First, we aim to consider a larger class of GNNs. This will require to augment the expressivity of the logic, for instance by adding other activation functions like ReLU in an extension of $K^\#$. Fortunately, SMT solvers have been extended to capture ReLU (for example see Katz et al. [2017]), but it is open how a well-defined extension of our logic looks like. Similarly, it would be useful to allow for more flexibility in the combination or aggregation functions of the considered GNNs. For example, allowing for arbitrary feedforward neural networks in the combination functions or considering the mean function as aggregation. Another idea is to allow for global readouts in the considered GNNs. A GNN with global readout does not only rely on local messages passing from neighbors to neighbors, and can instead consider the whole graph. Presumably, an extension of $K^\#$ would need something akin to a universal modality to capture such behaviour.

A second interesting direction would be to consider other classes of graphs. For instance, reflexive, transitive graphs. Restricted types of graphs lead to different modal logics: KT (validities on reflexive Kripke models), KD (on serial models), $S4$ (reflexive and transitive models), KB (models where relations are symmetric), $S5$ (models where relations are equivalence relations), etc. [Blackburn et al., 2001]. The logic $K^\#$ defined in this paper is the counterpart of modal logic K with linear programs. In the same way, we could define $KT^\#, S4^#, S5^#$, etc. For instance, $KB^#$ would be the set of validities of $K^#-$formulas over symmetric models; $K^\#-$ would be the logic used when GNNs are only used to recognize undirected pointed graphs (for instance persons in a social network where friendship is undirected).

A third direction of research would be to build a tool for solving verification and explainability issues of GNNs using $K^\#$ as described in Section 1. The satisfiability problem of $K^\#$ is in PSPACE. Many practical problems are in PSPACE (model checking against a linear temporal logic property just to cite one [Sistla and Clarke, 1985]). This means that we may rely on heuristics to guide the search, but this needs thorough investigations.
Ethical Statement
There are no ethical issues.

Acknowledgments
This work was supported by the ANR EpiRL project ANR-22-CE23-0029, and by the MUR (Italy) Department of Excellence 2023–2027. We would like to thank Stéphane Demri for discussions.

References

