Off-Agent Trust Region Policy Optimization

Ruiqing Chen1,2,*, Xiaoyuan Zhang1,*, Yali Du2, Yifan Zhong1, Zheng Tian2, Fanglei Sun2 and Yaodong Yang1,†

1Institute for AI, Peking University, Beijing, China
2ShanghaiTech University, Shanghai, China
3King’s College London, UK
yaodong.yang@pku.edu.cn

Abstract

Leveraging the experiences of other agents offers a powerful mechanism to enhance policy optimization in multi-agent reinforcement learning (MARL). However, contemporary MARL algorithms often neglect experience sharing possibilities or adopt a simple approach via direct parameter sharing. Our work explores a refined off-agent learning framework that allows selective integration of experience from other agents to improve policy learning. Our investigation begins with a thorough assessment of current mechanisms for reusing experiences among heterogeneous agents, revealing that direct experience transfer may result in negative consequences. Moreover, even the experience of homogeneous agents requires modification before reusing. Our approach introduces off-agent adaptations to the multi-agent policy optimization methods, enabling effective and purposeful leverage of cross-agent experiences beyond conventional parameter sharing. Accompanying this, we provide a theoretical guarantee for an approximate monotonic improvement. Experiments conducted on the StarCraftII Multi-Agent Challenge (SMAC) and Google Research Football (GRF) demonstrate that our algorithms outperform state-of-the-art (SOTA) methods and achieve faster convergence, suggesting the viability of our approach for efficient experience reusing in MARL.

1 Introduction

Multi-agent reinforcement learning (MARL) [Busoniu et al., 2008; Yang and Wang, 2020] aims to develop multi-agent systems by enabling agents to co-evolve towards their respective goals of reward maximization. Recently, substantial advancements in both algorithms and testing environments have been achieved in MARL. This approach has proven to be effective in multiplayer games [Peng et al., 2017; Baker et al., 2020; Brown and Sandholm, 2019; Vinyals et al., 2019], intelligent transportation systems [Adler and Blue, 2002], sensor networks [Zhang and Lesser, 2011], and energy networks [Glavic et al., 2017; Qiu et al., 2023]. Fascinating as these results are, a long-standing problem of MARL is its extremely high sample complexity, as the original single-agent sample complexity problem is exacerbated by multi-agent interactions. Existing methods attempt to enhance sample efficiency by designing off-policy algorithms or sharing agents’ parameters. However, off-policy algorithms are direct extensions of single-agent counterparts and do not specifically address experience reuse between agents, while parameter-sharing methods only partially resolve homogeneous-agent cooperation issues. A more natural approach to improve sample efficiency remains to be proposed.

Analyzing learning patterns in human society reveals a common phenomenon of individuals subconsciously learning from their peers to improve their strategies [Jarrahi, 2018]. For instance, in soccer, players acquire effective techniques from their peers to improve their strategies [Jarrahi, 2018]. In this way, humans can learn not only from their own experiences but also from others, rapidly mastering complex tasks through limited trials. This observation inspires us to consider sharing valuable knowledge among agents to naturally improve sample efficiency. The significance of this lies in the fact that the improvement in sample complexity increases with the number of agents, which can be consider-
able in large-scale multi-agent settings [Zhou et al., 2019].
To our understanding, there seems to be limited exploration
into the specific conditions for agent reuse and the extent to
which experiences from other agents may be leveraged.

In our study, we investigate how learning from others’ ex-
periences contributes to efficient knowledge sharing among
agents. We merge on-policy and off-policy methods into a
unified approach termed off-agent policy optimization, cov-
ering heterogeneous and homogeneous agent scenarios de-
picted in Figure 1. Our primary contributions include:

- We propose an off-agent framework, defining conditions
for experience reuse and establishing theoretical support
for approximate monotonic policy improvement. Based
on these conditions, we devise a mechanism for experi-
ence sharing and a distribution of experience mappings
between agents.
- We introduce two practical algorithms—Off-Agent
TRPO (OATRPO) and Off-Agent PPO (OAPPO)—and
validate their effectiveness and adaptability through a
tailored Maze game, highlighting the benefits and effects
of various mapping distributions.
- Additionally, through evaluations on the StarCraftII
Multi-Agent Challenge (SMAC) and Google Research
Football (GRF), we demonstrate that OAPPO and OA-
TRPO not only achieve SOTA performance on bench-
mark tasks but also offer enhanced sample efficiency and
stable performance improvements.

2 Related Work

Our work, grounded in the MARL policy optimization frame-
work, relates methods of experience reuse to off-policy meth-
ods. We subsequently review the literature on MARL policy
optimization and off-policy topics, distinguishing our algo-

rithm from imitation learning.

In the field of cooperative MARL, Independent Proxi-
mal Policy Optimization (IPPO) [de Witt et al., 2020] was
introduced to address the gap in Trust Region Learning
(TRL). This approach views other agents as part of the en-
vironment when updating a single agent. However, this
method gives rise to non-stationary issues as other agents
continuously evolve. To address this problem, the central-
ized training with decentralized execution paradigm (CTDE) was
introduced. [Lowe et al., 2017; Foerster et al., 2018;
Zhou et al., 2021]. Here, agents make decisions based on
their local observations and update policies with a global
value function. Building on the CTDE training paradigm,
several effective multi-agent optimization algorithms have
been proposed. MADDPG [Lowe et al., 2017] pro-
vides the first general solution for cooperative and competi-
tive scenarios, while Coordinated Proximal Policy Optimiza-
tion (CoPPO) [Wu et al., 2021] extends trust region methods
to multi-agent systems. Multi-Agent Proximal Policy Opti-
mization (MAPPO) [Yu et al., 2021] significantly improves
sample efficiency through parameter sharing. However, when
faced with a heterogeneous agent scenario, MAPPO can lead
to exponentially worse suboptimal outcomes [Kuba et al.,
2021]. Heterogeneous-Agent Trust Region Policy Optimiza-
tion (HATRPO) algorithm [Kuba et al., 2021] employs se-
quential policy update methods to avoid the joint policy stuck
in local optima. Nevertheless, it underperforms in chal-
 lenging scenarios due to poor sample efficiency. [Sun et al.,
2023] assures monotonicity for trust regions in non-stationary
settings, and [Wang et al., 2023] does likewise for agent inter-
actions. Nevertheless, their studies omit theoretical analysis
of agents’ experience reuse. Our off-agent algorithm designs
a scheme for agents to reuse other agents’ experiences, sig-
ificantly enhancing sample efficiency in MARL policy opti-
mization with guaranteed performance.

Off-policy algorithms enhance sample efficiency by
reusing samples gathered from previous policies. Numer-
ous off-policy algorithms, including Deep Deterministic Pol-
icy Gradient (DDPG) [Lillicrap et al., 2015] and Soft Actor-
Critic (SAC) [Haarnoja et al., 2018], have been proposed
within the MARL context. However, these methods may
suffer from significant bias due to off-policy data. Ap-
proaches like Policy-on Policy-off Policy Optimization (P3O)
[Fakoor et al., 2020] and Actor Critic with Experience Re-
play (ACER) [Wang et al., 2016], which combine on-policy
and off-policy methods, can significantly mitigate distribu-
tion shifting. However, they lack a theoretical performance
guarantee. Recently, Generalized Proximal Policy Optimiza-
tion with Experience Reuse (GePPO) [Queeney et al., 2021]
proposed a PPO-based method that integrates off-policy and
on-policy methods, offering a lower bound to ensure perfor-
ance improvement. However, it merely considers sample
reuse in the time dimension and single-RL scenarios. Shared
Experience Actor Critic (SEPS) [Christianos et al., 2020] has
proposed a method for utilizing experiences among agents,
yet it has not explored the extent to which agents can reuse
experiences. Although Selective Parameter Sharing (SEPS)
[Christianos et al., 2021] has addressed the issue of agent
selection, it has not yet investigated the conditions for pos-
sible agent reuse. To our knowledge, there appears to be a
scarcity of comprehensive research and established standards
on methods and conditions for agent experience reuse. Con-
sequently, we investigated the conditions for experience reuse
between agents and proposed an off-agent PG algorithm that
allows an agent to update from the experiences of other agents
while ensuring performance improvement.

Our algorithms facilitate learning from the experiences of
other agents, a concept similar to the paradigm of imita-
tion learning. Imitation Learning (IL) [Hussein et al., 2017;
Osa et al., 2018; Oh et al., 2018; Zare et al., 2023] aims to
emulate the behavior of experts in specific tasks by learning
the mapping between observations and actions. While IL re-
quires expert data, our method does not, as it updates their
policy from the exchange of experiences between agents.

3 Preliminaries

We consider a multi-agent decentralized partially observable
Markov decision process (Dec-POMDP) [Oliehoek and Am-
ato, 2016], defined by a tuple \(\langle \mathcal{N}, \mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{Z}, \mathcal{O}, p, \gamma \rangle \). Here,
\(\mathcal{N} = \{1, \ldots, n\} \), \(\mathcal{S} \) represents the finite state space, and
\(\mathcal{A} = \prod_{i=1}^{n} \mathcal{A}^{i} \) denotes the joint action space, composed of
the actions of each agent. The transition probability function
is $p : S \times A \to \Delta_S$, Δ_S means the distribution of state, while $R(s, a) : S \times A \to \mathbb{R}$ stands for the reward function, and $\gamma \in [0, 1)$ is the discount factor.

In a partially observable scenario, the observation of each agent i is $o_i \in \mathcal{O}$, given by the observation mapping: $Z(s, a) \to \mathcal{O}$. We consider the decision of each agent as a stationary policy $\pi_i : \mathcal{O} \to \Delta_A$, where Δ_A means the distribution of action. The agents interact with the environment as per the following protocol: at time step $t \in \mathbb{N}$, the agents are at state $s_t \in S$, with agent i observing o_it; agent i takes an action $a_t^i \in \mathcal{A}_i$, drawn from its policy $\pi_i(\cdot | o_t^i)$, which, in conjunction with the actions of other agents, forms a joint action $a_t = (a_1^i, \ldots, a_n^i) \in \mathcal{A}$, drawn from the joint policy $\pi(\cdot | s_t) = \prod_{i=1}^{n} \pi_i(\cdot | o_t^i)$; the agents receive a joint reward $r_t = R(s_t, a_t) \in \mathbb{R}$, and transition to a state $s_{t+1} \sim p(\cdot | s_t, a_t)$.

In a fully-cooperative setting, all agents share the same reward function and aim to maximize the expected total reward $J(\pi) = \mathbb{E}_{\tau \sim \pi} [\sum_{t=0}^{\infty} \gamma^t r_t]$, where $\tau \sim \pi$ represents a process of sampling followed by $s_0 \sim \rho^0, a_1 \sim \pi(\cdot | s_1)$ and $s_{t+1} \sim p(\cdot | s_t, a_t)$. The joint policy π, the transition probability function p, and the initial state distribution ρ^0, induce a marginal state distribution at time t, denoted as ρ^t. We define the marginal state distribution as $\rho_{\pi} \triangleq \sum_{t=0}^{\infty} \gamma^t p^t$. For an agent i, we define the observation distribution as $o_{it} \sim \pi_i(o_{it}) \triangleq \sum_{t=0}^{\infty} \gamma^t \pi_i^t(o_{it}) \triangleq o_i$.

The state value function and the state action value function are defined as: $V_{\pi}(s) = \mathbb{E}_{\tau \sim \pi} [\sum_{t=0}^{\infty} \gamma^t r_t | s_0 = s]$ and $Q_{\pi}(s, a) = \mathbb{E}_{\tau \sim \pi} [\sum_{t=0}^{\infty} \gamma^t r_t | s_0 = s, a_0 = a]$. Subsequently, the advantage function is given as $A_{\pi}(s, a) = Q_{\pi}(s, a) - V_{\pi}(s)$.

4 Off-Agent Policy Optimization

In this section, we present the framework for our Off-Agent Policy Optimization (OAPO). In the following section, we assume that all agents in the same scenario share the same state and action space. Section 4.1 outlines the theoretical framework for the reuse of experience and reviews the traditional MARL algorithm in this context. Moving to Section 4.2, we initially define the conditions required for efficient experience reuse among agents and subsequently propose the Off-Agent Multi-Agent Trust Region Method as a solution to these challenges. Ultimately, we perform a theoretical analysis of the proposed algorithm, leading to an approximate monotonic improvement guarantee.

4.1 Revisit Experience Reuse in Multi-agent Policy Optimization

To facilitate a comprehensive discussion on the mechanism of experience reuse, we will use MAPPO as the representative of parameter-sharing algorithms class, and HAPPO as the representative of parameter non-sharing algorithms class in the following theoretical framework and experimental setting. Our primary focus is on the optimization objective of MARL, which is expressed as:

$$J(\bar{\pi}) = J(\pi) + \mathbb{E}_{s \sim \rho, a \sim \bar{\pi}} [A_{\pi}(s, a)].$$

Here, $\bar{\pi}$ is the candidate joint policy. Denote $\pi(\cdot | s) = \prod_{i=1}^{n} \pi_i(\cdot | o_t^i)$, $J(\pi) = \mathbb{E}_{s \sim \pi} [\sum_{t=0}^{\infty} \gamma^t r_t]$, we can extend the MDP theoretical setting to Dec-POMDP. For parameter-sharing methods in MARL, it can be seen that each agent updates its policy using the experience of all other agents.

Consider $a_t \sim \pi_{(i)}(\cdot | o_t)$ as the probability of sampling action a_t from policy $\pi_{(i)}$ given observation o_t, with ζ being a permutation of the indices such that $\pi_{(i)}(\cdot | o_t) = \{1, 2, \ldots, n\}$. We define E_{ζ} to be the expected advantage when actions follow policies permuted by ζ:

$$E_{\zeta} = \mathbb{E}_{a \sim \rho, o^1, \ldots, o^n \sim \pi_{(i)}(\cdot | o), \ldots, \pi_{(n)}(\cdot | o_n)} [A_{\pi}(s, a)],$$

where ζ cycles through all policy index permutations. Consequently, we can expand formula (1) as follows:

$$J(\bar{\pi}) = J(\pi) + \frac{1}{A_n^n} \sum_{\zeta} E_{\zeta},$$

summing over all A_n^n permutations of ζ.

This equation characterizes the binding relationship between agents and experience, which can be regarded as the result of the combined action of A_n^n optimization objectives. Each agent uses the experience generated by another agent (possibly itself). It is imperative to maintain the uniqueness of each agent’s experience within every optimization objective. The reuse binding relationship between the agents can be found in Figure 2.

For independent learning in MARL, where each agent updates the policy based on its own experience, Eq. (1) is equivalent to the following.

$$J(\bar{\pi}) = J(\pi) + \mathbb{E}_{s \sim \rho, a \sim \pi(\cdot | o), \forall i [A_{\pi}(s, a)],}$$

Eq.(3) and Eq.(4) correspond to the update mechanisms in MAPPO and HAPPO, respectively. In MAPPO, experience sharing may be harmful when agents have conflicting goals, despite identical action and observation spaces. This can lead to suboptimal performance. HAPPO, in contrast, ensures monotonic improvement through sequential updates, but this can result in lower sample efficiency and slower convergence when each agent learns solely from its own experiences.

In response to these issues, we propose the OAPO algorithm. OAPO slightly relaxes the monotonic improvement guarantee to boost sample efficiency and overall performance. The algorithm is designed to efficiently utilize the experiences of other agents, enhancing its applicability in both heterogeneous and homogeneous cooperative settings.

4.2 Approximate Monotonic Improvement for Trust-Region Method

For each agent indexed by j within a set of n agents, let $e_j \in \{1, \ldots, n\}$. Here, e_j signifies that agent indexed by j reuses the experience of agent e_j. We define the vector $e = [e_1, \ldots, e_n]$ to represent a specific mapping of experience reuse among the n agents. The distribution $\omega = \Delta_e$ encompasses all these possible mappings. An illustration of selecting a mapping from ω is shown in Figure 2, aligning with the procedure in lines 5-6 of Algorithm 1.

As agents update their policies in a sequential manner, $\bar{\pi}^j$ denotes the resulting joint policy after the j-th update, which
Algorithm 1 Off-agent Policy Iteration with Approximate Monotonic Improvement

1: Initialize the joint policy π_0.
2: for each iteration $k = 0, 1, \ldots$ do
3: Collect data with π_k in the environment.
4: Compute the advantage function $A_{\pi_k}(s, a)$, $\epsilon = \max_{s,a} |A_{\pi_k}(s, a)|$ and $C = \frac{4\epsilon}{(1-\gamma)^2}$.
5: Draw a reuse sequence $e = [e_1, \ldots, e_m]$ from ω.
6: Shuffle an update sequence $\tilde{e} = shuffle(e)$ randomly.
7: for e_m in \tilde{e} do
8: Update the agent using

$$\pi_{k+1}^m = \arg\max_{\pi_m} \left[\mathcal{L}^{e_{r_1:m}} \right]$$

$$= \mathbb{E}_{s\sim\rho_{x_0},a_{1:m-1} \sim \pi_{1:m-1},a_m \sim \pi_{e_m}} [A_{\pi}(s, a_{1:m})].$$

9: end for
10: end for

is constructed as $\tilde{\pi}^j = \pi_{e_1} \times \cdots \times \pi_{e_m}$. We define the joint policy as $\pi = \prod_{k=1}^m \pi_{e_k}$ with its associated joint advantage function $A_{\pi}(s, a)$. During each update, π_{e_m} represents the candidate policy for the m-th agent, and we define

$$\mathcal{L}^{e_{r_1:m}} \left(\pi_k^{m-1}, \pi_{e_m} \right) = \mathbb{E}_{s\sim\rho_{x_0},a_{1:m-1} \sim \pi_{1:m-1},a_m \sim \pi_{e_m}} [A_{\pi}(s, a_{1:m})].$$

Where $a_{1:m-1}$ represents the joint actions taken by the first $m-1$ agents, and the term $A_{\pi}(s, a_{1:m})$ can be broken down as specified by the Multi-Agent Advantage Decomposition (Appendix B). The function \mathcal{L} serves as our optimization target within a multi-agent cooperative framework.

To ensure stable performance improvement, we impose constraints on our optimization objectives. The following lemma provides a lower bound on the potential increase in expected returns when switching from a current joint policy π to any new joint policy $\tilde{\pi}$:

Lemma 1. Given π as a joint policy, for any joint policy $\tilde{\pi}$, we have

$$J(\tilde{\pi}) - J(\pi) \geq \mathbb{E}_{\pi \sim \omega} \sum_{m=1}^{n} \left[\mathcal{L}^{e_{r_1:m}}(\pi^m) - CD_{\text{KL}}^{\max}(\pi_{e_m}, \tilde{\pi}_{e_m}) \right],$$

where $\tilde{\pi}^i = \pi_{e_1} \times \cdots \times \pi_{e_m}$ is defined as the policy update up to the i-th agent, ω is a distribution of reuse mapping satisfying Condition 1, and $J(\pi) = \mathbb{E}_{x_0 \sim \omega} \sum_{i=0}^{n} \gamma^i r_t$. $C = \frac{4\epsilon}{(1-\gamma)^2}$ and $\epsilon = \max_{s,a} |A_{\pi_k}(s, a)|$. The proof is shown in Appendix D.

As described in Algorithm 1, the proposed OAP proceeds by collecting data, computing the advantage function, and update the policy of each agent sequentially based on a specific order and experience reuse mapping. To enable effective experience reuse, we introduce a constraint on the similarity between policies, which is formalized in the following:

Condition 1. Let $\tilde{\pi}_i$ be the candidate policy of agent i. For agent i to reuse the experience produced by agent j, the following condition must be satisfied:

$$\tilde{\pi}_i \in \mathcal{B}_\sigma(\pi_j), \quad i, j \in \mathcal{N},$$

here, $\mathcal{B}_\sigma(\pi_j)$ represents a sphere defined by the KL divergence, and σ is a small positive threshold. The candidate policy $\tilde{\pi}_i$ must stay within this KL divergence sphere around π_j to utilize its experience. This condition enables us to construct an appropriate distribution for reuse mapping, and a complete explanation is available in Section 5.3.

Building on Lemma 1, we propose a theorem guaranteeing the approximate monotonic improvement of the OAP algorithm. The theorem is stated as follows:

Theorem 1. Let $U(x_0, \epsilon)$ denote the neighborhood of a point x_0 within distance ϵ, where ϵ is a positive number. For a sequence of joint policies π_k^{∞} that satisfies Condition 1, after applying updates via Algorithm 1, we find $J(\pi_{k+1}) - J(\pi_k) \geq \max(\mathcal{U}(0, \epsilon))$ when $k > K, K \in \mathbb{N}$. This result demonstrates the approximate monotonic improvement of the policies, with a comprehensive proof provided in Appendix E.

Remark. Given the sequential updating approach, the agent only employs experiences that satisfy the reuse condition during the reuse phase. This methodology ensures a stable convergence of expected returns and provides a guarantee of approximate monotonicity, ensuring that our policy exhibits consistent iterative improvement.
5 Practical Algorithm Implementation

Direct computation of \mathcal{L} is not practical. As such, we propose the following transformation:

Proposition 1. Assume $\pi = \prod_{k=1}^{n} \pi_{ek}$ is a joint policy, e represents the binding relationship between experience reuse for all agents. $A_{\pi}(s, a)$ denotes joint advantage function, and $\tilde{\pi}_{em}$ is a candidate policy conditioned on the experience of agent m. Then,

$$
\mathcal{L}_{\pi}^{e_{1:m}} (\tilde{\pi}_{m}^{m-1}, \tilde{\pi}_{em}) = \mathbb{E}_{s \sim p_{m}, a_{1:m-1} \sim \tilde{\pi}_{m-1}, a_{m} \sim \tilde{\pi}_{em}} [A_{\pi}(s, a_{1:m})] = \mathbb{E}_{s \sim \pi} \left(\frac{\tilde{\pi}_{em}}{\pi_{m}} - 1 \right) A_{\pi}(s, a).$$

Through this transformation, we convert an intractable optimization objective into one leveraging the existing joint advantage function, modifying it as needed with the updated joint policy factor. Balancing computational complexity and performance enhancement, we devise two MARL algorithms using the trust region method to substantiate our method. Each agent’s policy π_{i} is parameterized by θ_{i}, and the collective policy π_{θ} is denoted by $\theta = (\theta_{1}, \ldots, \theta_{n})$.

5.1 Off-Agent Trust Region Policy Optimization (OATRPO)

In line with TRPO, we replace the challenging maximum KL-divergence with the expected KL-divergence constraint $\mathbb{E}_{o \sim \eta_{e_{m}}} [D_{KL}(\pi_{m}(.|o), \tilde{\pi}_{em}(.|o))] \leq \delta$, where δ is a pre-set threshold, and Monte Carlo method is used for approximation.

Our proposed OATRPO algorithm updates the policy parameters θ_{k+1} for agent e_{m} at each iteration $k + 1$, utilizing the experience from agent m. The refined optimization objective for OATRPO is:

$$
\theta_{k+1} = \text{arg max}_{\theta} \mathbb{E}_{s, a \sim p} \left[\frac{\pi_{\theta}(s, a)}{\tilde{\pi}_{\theta_{k}}(s, a)} - 1 \right] \rho_{g_{k+1}} A_{\tilde{\pi}_{\theta_{k}}}(s, a),
$$

subject to $\mathbb{E}_{o \sim \eta_{e_{m}}} [D_{KL}(\tilde{\pi}_{\theta_{k}}(.|o), \tilde{\pi}_{\theta_{k}}(.|o))] \leq \delta$. (7)

Where $\rho_{g_{k+1}} = \frac{\pi_{\theta_{k+1}}}{\tilde{\pi}_{\theta_{k}}}$, $\hat{\theta}$ denotes the currently optimized policy, and $\mathbb{E}_{s, a \sim p} [\cdot]$ is $\mathbb{E}_{s \sim p, \pi_{e_{1:m-1}}, \pi_{\theta_{k+1}}} [\pi_{\theta_{k+1}}(s, a)]$, the detailed of OATRPO show in Appendix G.

5.2 Off-Agent Proximal Policy Optimization (OAPPO)

To avoid the significant computational cost associated with the second-order gradient, we adopt the same method used in PPO. Here, we employ a clipping operation to transform the optimization objective (7) into an unconstrained first-order optimization problem. The clipped objective for updating the parameter of agent e_{m} is given by:

$$
\mathbb{E}_{s, a \sim p} \left[\min \left(\rho_{g_{k}}, \text{clip} \left(\rho_{g_{k}}, 1 \pm \epsilon \right) \right) \pi_{\theta_{k+1}} A_{\tilde{\pi}_{\theta_{k}}}(s, a) \right],
$$

where $\rho_{g_{k}} = \frac{\tilde{\pi}_{\theta_{k}}}{\pi_{\theta_{k+1}}}$, and the remaining notation is consistent with optimization objective (7), the detailed of OAPPO show in Appendix H.

5.3 Reuse Mapping Distribution

The choice of reuse mappings influences the optimization trajectory. We represent the frequency of reuse mappings with a distribution $e \sim \omega$. Mappings that violate the reuse condition $D_{KL}(\pi_{e_{m}}, \tilde{\pi}_{e_{m}}) > \sigma$ can impede the approximate monotonic improvements and cause update inconsistencies when sharing experiences, thus they are assigned a zero probability. For mappings meeting the reuse condition, we define distribution ω to allocate occurrence probabilities:

$$
p(e_{m}) = \begin{cases}
\lambda, & 0 < D_{KL}(\pi_{e_{m}}, \tilde{\pi}_{e_{m}}) \leq \sigma \
\frac{1 - \lambda}{\gamma(m) - 1}, & \lambda \leq \gamma(m) - 1 \
\frac{1}{\gamma(m) - 1}, & 0 < D_{KL}(\pi_{e_{m}}, \tilde{\pi}_{e_{m}}) \leq \sigma \
0, & D_{KL}(\pi_{e_{m}}, \tilde{\pi}_{e_{m}}) > \sigma \
\end{cases}.
$$

Where $\gamma(m)$ denotes the count of agents whose experience agent m can draw on. The hyperparameter λ balances the experience exchange between agent m and others, while σ sets the policy distance threshold for experience reuse. The probability distribution $p(e_{m})$ must integrate into one over all experiences e_{m}. As outlined in Algorithm 1, each policy iteration employs a single reuse mapping. Using all possible mappings exponentially increases the computation and potential invalid updates for an agent. To improve sampling efficiency and lower complexity, we translate reuse mapping probabilities into weights, indicating how often an agent’s experience is used. (c) The effect of policy distance (σ). (d) The influence of reuse mapping distribution (λ).

Figure 3: (a) Black and Red maze game map: ⚫ symbolizes the target, ⚫ the red agent, and ⚫ the black agent. (b) Algorithmic performance in the maze game, each tested with 5 seeds—mean shown by solid line, standard deviation by shadow. Consistent seed number used in (c) and (d). Effects of distribution probability changes and policy distance on algorithm performance examined in (c) and (d).
6 Experiments

We designed two maze-based games to assess the efficacy of various reuse strategies in mixed environments. Subsequently, we concentrated on two prevalent environments: the StarCraft II Multi-Agent Challenge (SMAC) and Google Research Football (GRF). Within these settings, we evaluated the performance of our algorithms, both with and without an off-agent. To ensure a thorough evaluation of our algorithm’s capabilities, we also conducted comparisons with several established baseline algorithms, including: MAPPO, which uses parameter sharing; HAPPO, which relies exclusively on individual experiences for updates; SEPS, which adopts selective parameter sharing; and SEAC, which incorporates experiences from other agents for updates.

6.1 Maze Game
Black and Red Game

Figure 3a illustrates the Black and Red game scenario: red agents can move through red grids and open spaces; black agents through black grids and open spaces. Both strive to reach the terminal (∗) via possible optimal routes (blue lines). The global state comprises a 9 × 9 matrix of possible experiences, with each agent’s 3 × 3 view matrix and location forming its observation. Agents can move: up, down, left, right, or nap. Experiment details are in Appendix I.

Figure 3b reveals that in heterogeneous tasks, the shared parameters of MAPPO often produce suboptimal results. HAPPO performs better, but requires more samples and converges slowly. Homogeneous scenarios (e.g., Ma-Mujoco) show that direct experience reuse can degrade performance (Appendix A). Our methods surpass MAPPO and HAPPO, avoiding MAPPO’s local optima and converging faster than HAPPO through inter-agent reuse. In TRPO’s tighter constraints, OATRPO converges quicker than OAPPO.

Modifying the parameter σ significantly affects the scope of experience that agents can reuse, as depicted in Figure 3c. With a small σ (σ = 0.01), agents are constrained to their own experiences, causing policy updates and convergence to be slower. A larger σ (σ = 0.1) incorporates more relevant experiences, enhancing the convergence rate. However, as σ expands further (σ = 1), the inclusion of irrelevant experiences confuses the direction of gradient update. An overly large σ (σ = 10) causes the agent to integrate experiences from all peers, which may hinder performance due to the assimilation of divergent policies.

When assessing the effect of reuse mapping distributions on performance through adjustment of λ, as illustrated in Figure 3d, we find that a smaller λ (λ = 0.2) promotes agents to prioritize external experiences, potentially leading to local optima due to policy fluctuations in initial training. A larger λ (λ = 1) restricts agents to their own experiences, which is less effective and delays convergence compared to intermediate values of λ (λ = 0.4/0.7), which strike a balance in experience reuse. Among these, λ = 0.7 demonstrates marginally improved performance relative to λ = 0.4. Optimal selection of λ is thus critical for advancing agent performance and accelerating convergence.

Black Blue Red Game

To assess how different experience reuse methods affect performance, we created another maze game with three humanoid icons representing red, black, and blue agents. A blue trap grid, accessible to only black and red agents, helps demonstrate reuse effects among similar agents. The red agent cannot enter black grids, the black agent cannot enter red grids, and the blue agent cannot enter both. Figure 5a shows the game map and agent roles, revealing numerous decision conflicts between the red and black agents, while black and blue agents have fewer differences.

We tested four reuse schemes to examine inter-agent reuse effects. No Reuse (NR) involves agents updating based solely on their experiences (HAPPO). Unreasonable Reuse...
(UR) has black and red agents sharing experiences. Reasonable Reuse (RR) involves sharing between black and blue agents. All Reuse (AR) indicates all agents share experiences (MAPPO). We modified OAPPO parameters to implement these strategies, as shown in Figure 5b. Results indicate that experience reuse is suboptimal when agents’ policies differ significantly, potentially causing a local optimum trap. In UR and AR, the black agent’s experience sharing with the red, leading them to become stuck in a local optimum. In RR, the blue agent’s slightly different optimal policy, with the help of TRL, they can still reach an optimal solution as in NR.

6.2 Results on SMAC

SMAC [Samvelyan et al., 2019] is a widely used multi-agent cooperative environment where teams of same or different agents work together to defeat an opposing team. HAPPO excels on Hard and some Super Hard maps but struggles on others due to its reliance on individual training samples, limiting its ability to achieve the performance of MAPPO within the same number of samples, particularly when the agent count rises. Thus, we focus on the Super Hard maps and PPO-based algorithms to illustrate performance differences. The global state includes all map cells, agent coordinates relative to the map center, and unit features in view. SMAC’s local observation encompasses a circular area around each unit and visible surviving units. Experiment details are in Appendix K.

In scenarios with heterogeneous agents (3s5z vs 3s6z and MMM2, referenced in Figures 4c and 4d), OAPPO outperforms MAPPO and HAPPO. Unlike MAPPO, OAPPO maintains parameter sharing aligned with Proposition 1, and its experience reuse mechanism enhances convergence. Furthermore, OAPPO can construct a suitable distribution for the agent by adjusting both the distribution and the policy thresholds. This method consequently achieves better results in contrast to the conventional approach of directly selecting the experience reuse methods of SEPS and SEAC. In the homogeneous agent setup 6h vs 8z (Figure 4b), OAPPO leverages reuse mapping distribution to balance the degree of experience reuse of other agents, achieves more stable performance enhancements without sacrificing experience reuse. This stability results in superior outcomes compared to MAPPO. Overall, OAPPO surpasses HAPPO in convergence speed and performance across all SMAC tasks at the same epochs.

6.3 Results on GRF

We evaluate OAPPO and OATRPO across several GRF [Kurach et al., 2020] academy scenarios, including academy_pass_and_shoot_with_keeper (pass and shoot), academy_3_vs_1_with_keeper (3_vs_1), academy_counterattack_easy (CA-Easy), and academy_counterattack_hard (CA-Hard). In these scenarios, a team of agents competes against an opponent team controlled by built-in algorithm to score. While all agents have the same action space, position-based role differences exist. The global state refers to the complete set of data returned by the environment after actions are performed. Local observations include player coordinates, ball possession and direction, active player, or game mode. Configuration of the experiment show in Appendix J.

Table 6b presents the results. For simple tasks (pass and shoot, 3_vs_1), agents achieve nearly perfect scores solely through their individual experiences, without sharing. However, as tasks become complex (CA-Easy), the reliance on individual experience is inadequate to obtain high performance. In these scenarios, selective reuse of the experiences of other agents yields satisfactory results, clearly demonstrating the superiority of OAPPO and OATRPO. When tasks gradually increase in complexity and difficulty (CA-Hard), the effective reuse of experiences continues to exhibit a faster convergence speed. This maintains the superior performance of OAPPO and OATRPO over other baseline algorithms.

7 Conclusion

To tackle low sample efficiency in MARL, we developed a method enhancing inter-agent experience reuse, and designed Maze Game to investigate conditions requisite for such reuse. Our approach yielded two innovative algorithms, OATRPO and OAPPO, based on inter-agent experience sharing with guarantees of approximate monotonic improvement. Experimental results on SMAC and GRF show our algorithms allow selective experience reuse by agents, leading to superior sample efficiency and improved performance in these tasks. Nevertheless, the efficacy of our experience reuse is dependent upon the hyperparameter λ and the distribution threshold σ, suggesting future work to adaptively fine-tune these parameters with respect to agent roles and experience quality for enhanced performance.
Contribution Statement
Ruiqing Chen and Xiaoyuan Zhang contribute equally to this work, work done when Ruiqing Chen visited Peking University. The corresponding author is Yaodong Yang.

References

