ParsNets: A Parsimonious Composition of Orthogonal and Low-Rank Linear Networks for Zero-Shot Learning

Jingcai Guo1,2,*, Qihua Zhou1,3, Xiaocheng Lu1, Ruabin Li1, Ziming Liu1, Jie Zhang1, Bo Han1, Junyang Chen1,3, Xin Xie5 and Song Guo6

1Department of Computing, The Hong Kong Polytechnic University
2Hong Kong Polytechnic University Shenzhen Research Institute
3College of Computer Science and Software Engineering, Shenzhen University
4Department of Computer Science, Hong Kong Baptist University
5College of Intelligence and Computing, Tianjin University
6Department of Computer Science and Engineering, HKUST

jc-jingcai.guo@polyu.edu.hk

Abstract

This paper provides a novel parsimonious yet efficient design for zero-shot learning (ZSL), dubbed \textit{ParsNets}, in which we are interested in learning a composition of \textit{on-device friendly} linear networks, each with orthogonality and low-rankness properties, to achieve equivalent or better performance against deep models. Concretely, we first refactor the core module of ZSL, i.e., the visual-semantics mapping function, into several base linear networks that correspond to diverse components of the semantic space, wherein the complex nonlinearity can be collapsed into simple local linearity. Then, to facilitate the generalization of local linearity, we construct a maximal margin geometry on the learned features by enforcing low-rank constraints on intra-class samples and high-rank constraints on inter-class samples, resulting in orthogonal subspaces for different classes. To enhance the model’s adaptability and counterbalance the over-/under-fittings, a set of sample-wise indicators is employed to select a sparse subset from these base linear networks to form a composite semantic predictor for each sample. Notably, maximal margin geometry can guarantee the diversity of features and, meanwhile, local linearity guarantees efficiency. Thus, our \textit{ParsNets} can generalize better to unseen classes and can be deployed flexibly on resource-constrained devices.

1 Introduction

Zero-shot learning (ZSL) has received increasing attention for its imitation ability of human-like knowledge transfer to recognize unseen classes without having to observe any real sample before [Chen \textit{et al.}, 2021b; Lu \textit{et al.}, 2023]. Such recognition is typically achieved by training labeled seen class samples combined with a set of shared semantic descriptors spanning both seen and unseen classes, and generalizing the trained model to recognize samples from unseen classes. The shared semantic descriptors are usually implemented by simple semantic attributes [Lampert \textit{et al.}, 2013] or word vectors [Pennington \textit{et al.}, 2014] that contain class-wise high-level information for each class. Therefore, a natural and widely adopted ZSL solution is to map a sample from its original feature space, e.g., visual space w.r.t. images, to the shared semantic space to construct a visual-semantics mapping function, wherein, the mapped semantic representation is calculated with those descriptors to search for one matched class that has the highest compatibility with the sample. Notably, based on the search scope, the classic ZSL and generalized ZSL (GZSL) are further defined, where the former infers only unseen classes, while the latter can also classify novel samples of seen classes.

In ZSL/GZSL, since the trained model has no observation of any sample from unseen classes, the mapping function is inherently biased towards seen classes [Fu \textit{et al.}, 2015; Guo \textit{et al.}, 2023], i.e., the mapped features are usually overfitted to clusters near seen classes, hence can hardly infer to unseen classes with satisfactory performance. To relieve the domain-biased overfitting, especially for GZSL, existing methods usually resorted to learning more representative features having less gap between seen/unseen classes. Some

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{The orthogonality indicates a maximal separability among classes: subspace visualization of AWA2 on three learned random classes by the proposed method.}
\end{figure}
widely used approaches include 1) visual-semantics alignment, for smooth knowledge transfer [Schonfeld et al., 2019; Guo and Guo, 2020]; 2) generative methods (i.e., synthesize mimic samples of unseen classes), for training a holistic model [Huang et al., 2019; Zhao et al., 2022]; and 3) fine-grained methods, for extracting more generalizable features [Huynh and Elhamifar, 2020; Guo et al., 2023].

Despite certain relief from the domain bias, we observe that existing methods, may in turn, inevitably incur the underfitting phenomenon on their trained models. For example, most GZSL models usually tend to obtain higher Harmonic Mean metrics [Xian et al., 2017] of the test accuracy. In other words, the recognition tasks for seen and unseen classes can suppress each other, yielding two mediocre results across seen/unseen classes. Hence, the training of ZSL/GZSL can easily fluctuate between over-/under-fittings and degrade the model’s generalization ability.

Moreover, it can be noted that existing methods mostly rely on a series of complex deep models to extract and fuse comprehensive features for superior recognition [Xie et al., 2019; Huynh and Elhamifar, 2020; Wang et al., 2018; Guo et al., 2023]. As a result, such training and deployment can be costly in terms of both computing and memory overhead. In this regard, we make an assumption that ZSL/GZSL can be more favorable to a scenario associated with resource-constrained devices due to the low or even zero data requirements. Such a scenario can also well align with ubiquitous devices and data in real-world applications. However, as far as we know, nearly no research has investigated lightweight ZSL/GZSL models deployed on resource-constrained devices.

In this paper, we suggest that the above generalization and lightweight requirements can be jointly achieved by our properly designed parsimonious yet efficient network refactoring framework, namely, ParsNets. Specifically, we utilize a set of base linear networks to estimate the nonlinear visual-semantics mapping function that usually involves complex deep models, wherein, each base linear network can correspond to different components of the semantic space shared by both seen and unseen classes. To encourage the learned features to be most discriminative from each other and generalizable to novel concepts, we enforce a low-rank structure to the features of data samples from the same class and a high-rank structure to the features of data samples from all different classes. Hence, intra-class samples can reside in the same linear subspace, and meanwhile, inter-class subspaces can be orthogonal to each other (i.e., Figure 1). Such constructed maximal margin geometry is expected to facilitate a smooth knowledge transfer between seen and unseen classes since no entanglement exists. Moreover, to further encourage the model’s adaptability and counterbalance over-/under-fittings, we employ a set of sample-wise indicators to select a sparse subset of these base linear networks to form a composite predictor for each sample, thus the global nonlinearity can be collapsed into sparse local linearities to further reduce the computing complexity. Our contributions are three-fold:

- We propose ParsNets, which is the first work that provides a parsimonious and on-device-friendly framework for ZSL/GZSL by refactoring the nonlinear large network into a composition of simple local linear networks.
- We enforce maximal margin geometry on the learned features to maximize the model’s discrimination and generalization ability, thus enabling a smooth knowledge transfer between seen and unseen classes.
- We provide detailed theoretical explanations on the rationale and implementation guarantee of ParsNets, which indicates its feasibility.

2 Related Work

2.1 Visual-Semantics Mapping in ZSL/GZSL

Existing ZSL/GZSL methods adopt three approaches to construct the visual-semantics mapping, including forward, reverse, and intermediate functions. Among them, forward mapping is the mainstream that maps samples from their visual features to the semantic space and computes their compatibilities with class-level semantic descriptions [Akata et al., 2015; Schonfeld et al., 2019]. Conversely, reverse mapping suggests that projecting semantic features into the visual space may decrease the feature variances [Zhang et al., 2017]. Diverging from direct mappings, intermediate functions explore metric networks to compute compatibilities of paired input visual and semantic features in an intermediate space [Sung et al., 2018]. However, it’s noted that the above methods are mostly built upon deep models, which are all inherently computational and memory-intensive frameworks. In this paper, we follow the forward mapping approach to implement the visual-semantics mapping function that aligns with most methods.

2.2 Domain-Bias Problem

In recent years, extensive efforts have been made to relieve the domain bias caused by the disjoint train (seen) and test (unseen) classes. For example, some methods tried to align the visual and semantic features within the visual-semantics mapping function to enable a smooth knowledge transfer [Zhang and Saligrama, 2015; Schonfeld et al., 2019; Guo and Guo, 2020]. Differently, some other methods proposed to synthesize mimical samples conditioned on unseen class semantic descriptors and jointly train a holistic model combined with seen class samples [Huang et al., 2019; Zhao et al., 2022; Feng et al., 2022]. In contrast, some recent methods focus on fine-grained elements or key points within samples to extract more generalizable features between seen/unseen classes [Xie et al., 2019; Huynh and Elhamifar, 2020; Guo et al., 2023]. Despite the relief from domain-biased overfitting, we observe that underfitting can inevitably arise and fluctuate the training towards mediocre convergence for both seen and unseen classes. This paper focuses on exploring a better balance between over- and under-fittings by the proposed maximal margin geometry and network refactoring.

3 Methodology

3.1 Preliminaries

Given a dataset from seen domain $D^S = \{x_i, a_i, y_i\}_{i=1}^N$ that contains N labeled samples $x_i \in \mathcal{X}^S$ with seen class labels
The task of GZSL is to construct a model trained on \mathcal{D}^S while can also generalize well to unseen domain $\mathcal{D}^U = \{(x^u, a_{y^u}, y^u) \mid x^u \in \mathcal{X}^U, y^u \in \mathcal{Y}^U\}$, where $\mathcal{A}^S \cap \mathcal{X}^U = \phi$ and $\mathcal{Y}^S \cap \mathcal{Y}^U = \phi$. To achieve this goal, a set of shared per-class semantic descriptors $\mathcal{A} = \mathcal{A}^S \cup \mathcal{A}^U$ is further specified for seen classes ($a_{y^u} \in \mathcal{A}^S$) and unseen classes ($a_{y^u} \in \mathcal{A}^U$), respectively, which are widely implemented by attributes or word vectors. Thus, the model can be formalized into training D and test sample T by solving the network weight Θ, if needed. During inference, given a test sample x^t, the recognition can be described as:

$$\arg \min_x \sum_{i=1}^{N} \mathcal{L}(f(x); \Theta), \quad \forall a_{y}=\varphi(\Theta),$$

where $\mathcal{L}(\cdot)$ minimizes the variance between mapped semantic features and ground-truth descriptors and $\varphi(\cdot)$ regularizes the network weight Θ, if needed. Notably, if the search scope is restricted to \mathcal{A}^U, the recognition becomes the classic ZSL.

3.2 Adaptive Composition of Linear Networks

To break the dependence on complex deep models, one possible solution is to use local linearity to estimate the global nonlinearity [Liu et al., 2018; Li et al., 2020]. In this paper, we apply a similar strategy to construct the visual-semantics mapping function. Concretely, we assume that a complex nonlinearly separable space can have sufficient linearly separable subspaces, and as such, we refactor the deep function $f(\cdot; \Theta)$ into several base linear networks as:

$$f(x) = \sum_{i=1}^{K} \Theta_i^T x + b_i \cdot \xi_i(x) + b,$$

where $\Theta_i^T x + b_i$ ($i = 1, 2, \ldots, K$) are a set of base linear networks with trainable weight Θ_i^T that jointly estimate $f(x)$, and b_i denotes the bias constant vector. Such an estimation directly reduces the overhead in terms of both computing and memory with only limited accuracy loss [Oiwa and Fujimaki, 2014; Liu et al., 2018; Li et al., 2020].

Differently, in our method, we further utilize a set of associated indicators $\xi_i(\cdot)$, i.e.,

$$\Xi(x) = [\xi_1(x), \ldots, \xi_K(x)],$$

(4)

to adaptively select a subset of $\{\Theta_i^T\}$ to form a composite sample-wise semantic predictor $f(x) \mid \xi_i(x)$ for each x. Such indicators are expected to be binary and sparse signals to fit with diverse samples in both visual and semantic spaces. Notably, the binarity can provide a gated functionality to active specific Θ_i^T, and the sparsity pushes the composite predictor to explore a better balance between over-funder-fittings due to sample-wise selection. Without loss of generality, given the $\xi_i(\cdot)$ (introduced in sect. Sample-Wise Indicators), we define one variable $\Phi(x)$ as:

$$\Phi(x) = \left[\xi_1(x), x^T \xi_1(x), \cdots, \xi_K(x), x^T \xi_K(x)\right],$$

(5)

$$= [\Xi(x) \otimes \left[1 \ x^T\right]]^T,$$

where $\Xi(x) = [\xi_1(x), \ldots, \xi_K(x)]$ and \otimes denotes the Kronecker product, and denote the variable Θ as:

$$\Theta = [b_1, \Theta_1^T, \ldots, b_K, \Theta_K^T]^T.$$

(6)

Thus, the composite semantic predictor in Eq. 3 can be rewritten as a regression form as:

$$f(x) = \Theta^T \Phi(x) + b.$$

(7)

Note that Eq. 7 can be significantly reduced to a lightweight model with the sparse binary signals from $\Xi(x)$, wherein, only a few numbers of $\{\Theta_i^T\}$ are activated. In other words, the nonlinear model $f(x)$ can collapse into a linear model at each point x and its nearby local field.

Mathematically, Eq. 7 can be solved efficiently by constructing a quadratic programming problem with the structural risk minimization as:

$$\arg \min_{\Theta,b,\gamma,\gamma^*} \frac{1}{2} \Theta^T \Theta + C \sum_{i=1}^{N} (\gamma_i + \gamma_i^*) ,$$

(8)

subject to:

$$\begin{align*}
\Theta^T \Phi(x) + b - a_y &\leq \epsilon + \gamma_i, \\
\gamma_i, \gamma_i^* &\geq 0, i = 1, 2, \ldots, N
\end{align*}$$

where a_y is the expected semantic descriptor, γ_i and γ_i^* are slack variables, and C is a non-negative weight that penalizes the prediction error ϵ. Since the input dimension is usually large, we can consider its dual form. Specifically, we introduce Lagrange multipliers $\alpha_i \geq 0, \mu_i \geq 0, \alpha_i^* \geq 0$, and $\mu_i^* \geq 0$ to obtain the Lagrange function as:

$$L(\Theta, \gamma_i, \gamma_i^*, \alpha_i, \alpha_i^*, \mu_i, \mu_i^*) = \frac{1}{2} \Theta^T \Theta + C \sum_{i=1}^{N} (\gamma_i + \gamma_i^*)$$

$$+ \sum_{i=1}^{N} \alpha_i \left(\Theta^T \Phi(x) + b - a_y - \epsilon - \gamma_i \right)$$

$$- \sum_{i=1}^{N} \mu_i \gamma_i^*.$$

(9)

It is easy to note that such a function can be solved by obtaining the saddle point $\frac{\partial L}{\partial \Theta} = 0$, $\frac{\partial L}{\partial \gamma_i} = 0$, and $\frac{\partial L}{\partial \mu_i} = 0$, and we can rewrite Eq. 8 as:

$$\arg \max_{\alpha_i,\alpha_i^*} \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) f(x) - \varepsilon \sum_{i=1}^{N} (\alpha_i + \alpha_i^*)$$

$$- \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) T(x_i, x_j),$$

s.t.

$$\sum_{i=1}^{N} (\alpha_i - \alpha_i^*) = 0, 0 \leq \alpha_i, \alpha_i^* \leq C,$$

(10)

where $T(x_i, x_j)$ is a constructed transformation function defined via Eq. 5 as:

$$T(x_i, x_j) = \Phi(x_i)^T \Phi(x_j)$$

$$= (1 + x_i x_j) \sum_{i=1}^{M} \xi(x_i) \xi(x_j).$$

(11)
Solving this problem and obtaining α_l and α'_l, the model in Eq. 3 can then be described as:

$$f(x) = \sum_{l=1}^{N} (\alpha_l - \alpha'_l) T(x, x_l) + b.$$

(12)

3.3 Sample-Wise Indicators

As to the associated indicators $\Xi(x)$ in Eq. 4, we expect such signals can have the following properties: 1) discrimination, which can provide sufficient compositions of linear networks for diverse samples; and 2) sparsity and binarity, which activate only a small subset of base linear networks to form the composite predictor. Based on this guidance, our method employs the unsupervised linear encoder (\mathbf{W})-decoder (\mathbf{W}') network to preliminarily capture the intrinsic data structure:

$$\arg \min_{\mathbf{W}, \mathbf{W}'} \| \mathbf{X} - \mathbf{W}' \mathbf{WX} \|_2,$$

(13)

wherein, the latent embedding $\mathbf{E} = \mathbf{WX}$ is usually more representative compressed variables that can be potentially used to construct the indicators $\Xi(x)$. In practice, Eq. 13 can be reformulated as $\| \mathbf{X} - \mathbf{W}' \mathbf{WX} \|_2$ by using the tied weights [Ranzato et al., 2007], i.e., $\mathbf{W}' = \mathbf{W}^T$, where only \mathbf{W} remains for estimation, hence reducing the complexity. Notably, the rationality can also be explained by the PCA equivalence of tying the weights [Vincent et al., 2010], whose orthogonality of the compressed space is more favorable.

Now we elaborate on the design of $\Xi(x)$. Given the embedding $\mathbf{E}_x \in \mathbb{R}^h$ of a sample x, we split it into a set of K components:

$$\left\{ \mathbf{E}_{x}^{(i)} = \mathbf{E}_x \left(i - 1 \right) \frac{h}{K} + 1, i \frac{h}{K} \right\} \in \mathbb{R}^\frac{h}{K}, \quad i = 1, 2, \ldots, K,$$

(14)

that correspond to K base linear networks. To determine the selection, we calculate the variance of each $\mathbf{E}_{x}^{(i)}$ to the mean value of \mathbf{E}_x, i.e., denoted as $\text{Var}^{(i)} \left(\mathbf{E}_{x}^{(i)} | \mu \mathbf{E}_x \right)$. Then, we can rewrite the indicators of Eq. 4 to:

$$\Xi(x) = \left[\text{Var}^{(1)}, \ldots, \text{Var}^{(K)} \right],$$

(15)

where each $\xi_i(x) = \text{Var}^{(i)}$. The rationality lies in that, if the variance of $\mathbf{E}_{x}^{(i)}$ is large, then the latent variables are more significant compared with others. Finally, to achieve a sparse subset of base linear networks, we rank all variances and select top-k indicators $\xi_i(x)$, i.e., $k \ll K$, and set them to 1, which can activate the corresponding base linear networks in Eq. 3 with $\left(\Theta_i^T x + b_i \right) \cdot 1$. Meanwhile, the remaining indicators are set to 0 to omit these base linear networks.

It is noticed that the encoder \mathbf{W} can be a pre-trained building block based on D^{δ}. In our method, on the one hand, it can be used to construct the sample-wise indicators, and meanwhile, on the other hand, we can also use the latent embedding $\mathbf{E} = \mathbf{WX}$ as the initial features of the composite linear networks of Eq. 3.

3.4 Orthogonality and Low-Rankness

The proposed composite linear networks provide the guarantee of a parsimonious and on-device-friendly framework for our ParsNets. In this section, inspired by subspace transformation [Qiu and Sapiro, 2015], we enforce a maximal margin geometry on the mapped features, i.e., low-rank structure to intra-class features and high-rank structure to inter-class features, respectively, which further guarantees the model’s generalization ability.

Concretely, without loss of generality, given the weight Θ_i of a linear network described in Eq. 3, we rewrite it as the matrix form as $\Theta_i^T \mathbf{X}$, where $\mathbf{X} = [x_1 \mid x_2 \mid \cdots \mid x_N] \in D^S$ with each column $x_i \in \mathbb{R}^d$ denoting a labeled sample from total $|\mathcal{Y}|^S$ seen classes. Let \mathbf{X}_h denote the sample matrix extracted from the columns of \mathbf{X} that belong to ν-th class, we construct a minimization problem as:

$$\arg \min_{\Theta_i} \sum_{i=1}^{K} \sum_{v=1}^{N} \left\| \Theta_i^T \mathbf{X}_v \right\|_\ast - \left\| \Theta_i^T \mathbf{X} \right\|_\ast,$$

s.t. $\left\| \Theta_i^T \right\|_\ast = 1, \left(\Theta_i, \Theta_j \right) = 0 (\forall j \in \left[1, K \right], i \neq j),$

where $\| \cdot \|_\ast$ is the nuclear norm which is a relaxation form of the non-differentiable rank function rank(\cdot), i.e., $\| \Theta_i^T \mathbf{X}_v \|_\ast \leq \text{rank}(\Theta_i^T \mathbf{X}_v), \| \Theta_i^T \mathbf{X} \|_\ast = \text{rank}(\Theta_i^T \mathbf{X})$.

Notably, in Eq. 16, $\| \Theta_i^T \mathbf{X}_v \|_\ast$ minimizes the rank of the mapped feature matrix of each class, which can encourage intra-class samples to reside in the same linear subspace. Meanwhile, $\| \Theta_i^T \mathbf{X} \|_\ast$ maximizes the rank of the mapped feature matrix of all classes, which can additionally encourage the aforementioned linear subspaces to be orthogonal from each other, thus maximizing the generalization ability. Moreover, $\| \Theta_i^T \|_\ast = 1$ is an extra regularization term, i.e., corresponds to $\varphi(\Theta)$ in Eq. 1, to avoid zero solution $\Theta_i^T = 0$, and $\left(\Theta_i, \Theta_j \right) = 0$ pushes each linear network to be independent of each other.

Now, we prove that the global minimum of Eq. 16 can be reached as 0, when each \mathbf{X}_h is orthogonal to the other.

Proposition 1. If \mathbf{X}_h and $\mathbf{X}_{h'}$ are orthogonal to each other, where $\forall v, v' \in \left[1, K \right]$ and $v \neq v'$, then Eq. 16 reaches the global minimum, i.e., $\text{Eq. 16} = 0$.

To prove Proposition 1, we first present two theorems, i.e., Theorem 1 and Theorem 2.

Theorem 1. Let \mathbf{M} and \mathbf{N} be matrices that have the same row dimensions, and let $[\mathbf{M}, \mathbf{N}]$ be the concatenation of \mathbf{M} and \mathbf{N}, we have:

$$\| [\mathbf{M}, \mathbf{N}] \|_\ast \leq \| \mathbf{M} \|_\ast + \| \mathbf{N} \|_\ast .$$

(17)

Proof of Theorem 1. It can be proved easily via:

$$\| \mathbf{M} \|_\ast + \| \mathbf{N} \|_\ast = \| \mathbf{M} 0 \|_\ast + \| \mathbf{0} \mathbf{N} \|_\ast \geq \| \mathbf{M} 0 \| + \| \mathbf{0} \mathbf{N} \|_\ast = \| \mathbf{[M, N]} \|_\ast .$$

(18)

Theorem 2. Let \mathbf{M} and \mathbf{N} be matrices that have the same row dimensions, and let $[\mathbf{M}, \mathbf{N}]$ be the concatenation of \mathbf{M} and \mathbf{N}, we have:

$$\| [\mathbf{M}, \mathbf{N}] \|_\ast = \| \mathbf{M} \|_\ast + \| \mathbf{N} \|_\ast ,$$

(19)

when \mathbf{M} and \mathbf{N} are column-wise orthogonal.
Proof of Theorem 2. We apply the singular value decomposition to M and N as:

$$
\begin{align*}
M &= [U_{M1}U_{M2}][\sum_{M} 0 0][U_{M1}U_{M2}]', \\
N &= [U_{N1}U_{N2}][\sum_{N} 0 0][U_{N1}U_{N2}]'.
\end{align*}
$$

(20)

where \sum_{M} and \sum_{N} contain non-zero singular values, then we can have:

$$
\begin{align*}
MM' &= [U_{M1}U_{M2}][\sum_{M} 0 0][U_{M1}U_{M2}]', \\
NN' &= [U_{N1}U_{N2}][\sum_{N} 0 0][U_{N1}U_{N2}]'.
\end{align*}
$$

(21)

Given that M and N are column-wise orthogonal, i.e., $U_{M1}U_{N1} = 0$, then Eq. 21 can be rewritten as:

$$
\begin{align*}
MM' &= [U_{M1}U_{N1}][\sum_{M} 0 0][U_{M1}U_{N1}]', \\
NN' &= [U_{M1}U_{N1}][0 0 \sum_{N}][U_{M1}U_{N1}]'.
\end{align*}
$$

(22)

Then we can have:

$$
\begin{align*}
[M, N][M, N]' &= MM' + NN' \\
&= [U_{M1}U_{N1}][\sum_{M} 0 0 \sum_{N}][U_{M1}U_{N1}]'.
\end{align*}
$$

(23)

Since the nuclear norm $\|M\|_*$ is empirically set as 200 for all datasets.

Proof of Proposition 1. Theorem 1 and Theorem 2 can obviously be extended to multiple matrices. As a result, for Eq. 16, we have:

$$
\sum_{i=1}^{K} \sum_{v=1}^{\gamma^q} \|\Theta^v_iX_v\|_* - \|\Theta^v_iX\|_* \geq 0.
$$

(24)

Based on Theorem 2 and Eq. 24, the minimization problem described in Eq. 16 can achieve the global minimum of 0, if the column spaces of all pairs of matrices are orthogonal.

4 Experiments

4.1 Experimental Setup

Dataset. We evaluate our ParsNets on four widely used ZSL/GZSL benchmark datasets, including AWA2 [Xian et al., 2018a], CUB-200 [Wah et al., 2011], SUN [Patterson et al., 2014], and aPY [Farhadi et al., 2009]. As to the splitting strategy of seen and unseen classes for each dataset, we and all involved competitors strictly follow [Xian et al., 2018a], which is the most adopted benchmark splitting for ZSL/GZSL, to ensure a fair comparison.

Evaluation Metrics. Two different scenarios are considered in our experiments, including the classic ZSL and GZSL. For ZSL, the recognition only searches the test samples from unseen classes and reports the multi-way classification accuracy as in previous works for our method and each involved competitor. Differently, for GZSL, we compute the average per-class prediction accuracy on test samples from unseen classes (U) and seen classes (S), respectively, and report the Harmonic Mean calculated by $H = (2 \times U \times S) / (U + S)$ to quantify the aggregate performance across both seen and unseen classes. As to the competitors, we select representative deep learning-based ZSL/GZSL methods based on the following criteria: 1) formally published in the most recent years; 2) covered a wide range of models; 3) all of them clearly represented the state-of-the-art.

Implementation. We implement the proposed ParsNets on Raspberry Pi 4B\footnote{www.raspberrypi.com/products/raspberry-pi-4-model-b}, which is a widely used low-cost edge device platform equipped with ARM Cortex-A72 CPU and 4GB RAM. Similar to the server-based computing architecture, the edge platform is installed with Ubuntu 20.10, Miniconda3, and PyTorch 1.8.0. that can support most modeling frameworks. To construct the ParsNets, we use the single-layer neural network with ReLU activation function for each of the base linear networks in Eq. 3, and the total number of the networks K is empirically set as 200 for all datasets. As to the sample-wise indicators in Eq. 15, we rank all variances and then enable k ranges in $\{10, 20, 30, 40, 80, 120, 160, 200\}$, which corresponds to $\{5\%, 10\%, 15\%, 20\%, 40\%, 60\%, 80\%, 100\%\}$ of the total base linear networks that have been activated during training. For the visual representation, we use the 2048-dimensional visual features extracted from ResNet for each input sample, which is common practice for most methods. Notably, the other competitors are all implemented and running on server-based computers along with powerful GPUs and large storage, further highlighting the on-device-friendly functionality of our method.

4.2 Comparison of ZSL Performance

We compare the proposed ParsNets with 16 state-of-the-art deep learning-based competitors in the classic ZSL scenario and report the multi-way classification accuracy in Table 1. It can be observed from the results that our method outperforms most deep learning-based competitors on all datasets. For example, DGZ [Chen et al., 2023] and TDCSS [Feng et al., 2022] are the two most powerful generative model-based ZSL competitors that can achieve 80.1% and 61.1% recognition accuracy on CUB-200. In contrast, despite as a non-deep method, our method obtains 0.2% and 19.2% higher performance with much lower computing cost. On the other hand, as a complex graph fine-grained method that utilized powerful GNNs as the sample representation, GKU [Guo et al., 2023] achieves 76.9% on CUB-200. In contrast, our method obtains a much better performance of 80.3% with/on only the resource-constrained device.

4.3 Comparison of GZSL Performance

As shown in Table 2, we compare the proposed ParsNets with 16 state-of-the-art deep learning-based competitors in the GZSL scenario and report the average per-class prediction accuracy on unseen classes (U), seen classes (S), and their Harmonic Mean (H). We can observe that our method also constantly outperforms other deep learning-based competitors by even improved margins than that of the ZSL sce-
nario on all datasets. Specifically, in GZSL, most competitors can hardly achieve balanced performance in both seen and unseen classes due to the domain-biased over-/under-fittings problem. For example, in Zhu et al. [Zhu et al., 2019] and APNet [Liu et al., 2020], there exist 49.5% and 42.0% margins between the accuracy of seen and unseen classes in AWA2 and aPY, respectively, thus the overall performance, i.e., Harmonic Mean, is significantly poor for real-world application. Moreover, even some of the most powerful competitors such as PSVMA [Liu et al., 2023] and DGZ [Chen et al., 2023] can still have a nonnegligible margin, i.e., 16.4% and 12.3% in SUN and AWA2, respectively. In contrast, due to the utilization of the proposed sample-wise composite semantic predictor and the constructed maximal margin geometry, our method can significantly relieve the domain-biased over-/under-fittings problem and obtain a more balanced performance in both seen and unseen classes.

4.4 Complexity

In Figure 2, we briefly compare the model complexity between the proposed ParsNets and some existing deep models. Specifically, we record the number of model parameters, i.e., denoted as ‘M’, and the ZSL accuracy (%) on the CUB-200 dataset one by one, and visualize their comparison results. We can observe that our ParsNets, i.e., denoted in ‘Red’, can obtain the best accuracy with the least number of parameters against all deep models, which is a hardware-level guarantee for the on-device utilization.

4.5 Mapping Robustness

To further demonstrate the effectiveness of our method in relieving the domain-biased over-/under-fittings problems, we visualize the raw and mapped features of samples from test unseen classes of AWA2 (10 unseens) and CUB-200 (50 unseens), respectively, using t-SNE [Van der Maaten and Hinton, 2008] in Figure 3. It can be observed that we can pose more subspaces between different classes with the obtained mapped features than the results with raw features. Specifically, Figure 3(a) and Figure 3(c) are the visualizations of raw features of AWA2 and CUB-200, respectively, where most classes are clustered in panhandle subspaces. In contrast, Figure 3(b) and Figure 3(d) are the visualizations of mapped features of AWA2 and CUB-200, respectively, by reusing the trained model based on only seen classes. It is obvious that the mapped feature space results in more subspaces for different classes, thus our method can be more separable and robust across both seen and unseen classes.

4.6 Ablation Study

We consider three scenarios to verify the effectiveness of the parsimonious network design in ZSL performance, including 1) only the sample-wise composite linear networks (SCLN) are used; 2) only the maximal margin geometry (MMG) is used (with all base linear networks activated); and 3) full ParsNets with both SCLN and MMG. The results are demonstrated in Table 3. We can observe that by using only SCLN or MMG separately, the performance is mediocre across all datasets. However, if both SCLN and MMG are used to form the ParsNets, our recognition performance is significantly improved with a large margin of 15.4% in AWA2, 21.5% in CUB-200, 18.8% in SUN, and 10.4% in aPY. Such an improvement fully demonstrates the effectiveness and rationality of our method.
Table 2: Comparison of GZSL performance with state-of-the-art competitors (accuracy %). The best result is marked in ‘Red’, the second in ‘Blue’, and the third in ‘Underlined’. ‘-’ indicates there is no reported result/open source or not applicable to the dataset.

Table 3: Ablation study

4.7 Sparseness Analysis

The sample-wise indicators are another important criterion in our method, where we need to select top-k indicators to activate k (out of total K) base linear networks to form the sparse composite linear networks for each dataset. We rank all variations in Eq. 15 and then enable k ranges in {10, 20, 30, 40, 80, 120, 160, 200} during training, which corresponds to a sparsity of {5%, 10%, 15%, 20%, 40%, 60%, 80%, 100%} out of the total number of base linear networks. We repeat the running on all datasets and record the ZSL recognition accuracy of each sparsity in Figure 4. It can be observed that as the number of base linear networks increases, the accuracy gradually improves at the very beginning phase. Soon, it reaches a stable phase where we can explore a trade-off between recognition accuracy and sparsity for each dataset. Specifically, we set k = 30 (15%) for AWA2, k = 40 (20%) for CUB-200, k = 80 (40%) for SUN, and k = 30 (15%) for aPY.

Figure 4: Sparseness analysis of AWA2, CUB-200, SUN, and aPY datasets, respectively (better viewed in color).

5 Conclusion

We proposed ParsNets, which is a novel parsimonious yet efficient ZSL/GZSL framework with on-device friendly properties. Its gist, as well as our novelty, mainly lies in three aspects: 1) the utilization of simple local linear networks to estimate nonlinear large visual-semantics mapping function; 2) the maximal margin geometry-enabled orthogonal subspaces to smooth out the seen/unseen knowledge transfer; and 3) the sample-wise indicators to enable sparse compositions of base linear networks. Experimental results verified the effectiveness of our method.
Acknowledgments

This research was supported by funding from the Hong Kong RGC General Research Fund (grant numbers 152211/23E and 15216424/24E), the National Natural Science Foundation of China (grant number 62102327), and the PolyU Internal Fund (grant number P0043932). This research was also supported by NVIDIA AI Technology Center (NVAITC).

References

