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Abstract
Although multi-view unsupervised feature selec-
tion (MUFS) is an effective technology for re-
ducing dimensionality in machine learning, exist-
ing methods cannot directly deal with incomplete
multi-view data where some samples are missing
in certain views. These methods should first apply
predetermined values to impute missing data, then
perform feature selection on the complete dataset.
Separating imputation and feature selection pro-
cesses fails to capitalize on the potential syner-
gy where local structural information gleaned from
feature selection could guide the imputation, there-
by improving the feature selection performance in
turn. Additionally, previous methods only focus
on leveraging samples’ local structure information,
while ignoring the intrinsic locality of the feature
space. To tackle these problems, a novel MUFS
method, called UNified view Imputation and Fea-
ture selectIon lEaRning (UNIFIER), is proposed.
UNIFIER explores the local structure of multi-
view data by adaptively learning similarity-induced
graphs from both the sample and feature spaces.
Then, UNIFIER dynamically recovers the missing
views, guided by the sample and feature similar-
ity graphs during the feature selection procedure.
Furthermore, the half-quadratic minimization tech-
nique is used to automatically weight different in-
stances, alleviating the impact of outliers and un-
reliable restored data. Comprehensive experimen-
tal results demonstrate that UNIFIER outperforms
other state-of-the-art methods.

1 Introduction
Multi-view data describes the same sample from different
perspectives or forms, often represented by high-dimensional
features [Liu et al., 2018; Zhang et al., 2021]. In practical
applications, acquiring labels for multi-view data is typical-
ly difficult due to the considerable amount of time and ef-
fort required. High-dimensional, unlabeled multi-view data
presents challenges for machine learning applications, such
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as the curse of dimensionality, performance degradation in
downstream tasks, and high computational costs. The re-
cently developed dimensionality reduction technique, multi-
view unsupervised feature selection (MUFS), aims to tackle
these difficulties by selecting informative features from multi-
view data in an unsupervised manner [Zhang et al., 2019;
Shi et al., 2023].

The existing MUFS approaches can generally be divided
into two categories. The first category of methods sequential-
ly connects features from multiple views into a vector, and
subsequently employs single-view feature selection method-
s such as LPscore [He et al., 2005], EGCFS [Zhang et al.,
2020], and FSDK [Nie et al., 2023]. The second category
of methods directly selects features from multi-view data by
considering the correlations among different views. Typical-
ly, CvLP-DCL [Tang et al., 2021] learns view-specific and
view-common label spaces and constructs a cross-view sim-
ilarity graph to capture consensus and diversity information
from multiple views. TLR-MFS [Yuan et al., 2022] enforces
a tensor low-rank constraint on the similarity graph matrix
to leverage high-order consensus information among differ-
ent views in the feature selection procedure. [Cao and Xie,
2024] fully utilizes neighbor information of differing views
to construct a similarity graph for feature selection. How-
ever, previous studies assumed that each sample is present
across all views, which may not hold in real-world scenar-
ios. For example, in Alzheimer’s disease detection, many pa-
tients only have features from magnetic resonance imaging
(MRI) and lack positron emission tomography (PET) scans
due to the high cost of PET imaging [Cai et al., 2018]. There
are few studies on unsupervised feature selection in incom-
plete multi-view data. [Xu et al., 2021] proposed a cross-
view feature selection method for incomplete multi-view da-
ta. This method first fills missing samples with mean values
and then uses weighted non-negative matrix factorization on
the imputed data to select features. The previously mentioned
MUFS methods, when applied to incomplete multi-view data,
consist of two sequential stages: first, the imputation of miss-
ing data, and then the subsequent selection of features from
the imputed multi-view data.

However, the aforementioned methods miss out on the
potential synergy by treating imputation and feature selec-
tion as two separate processes. Local structural information
gleaned from feature selection could guide the imputation
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process and, conversely, the refined imputation could lead
to improved feature selection performance. Furthermore, al-
though these methods have leveraged samples’ local struc-
ture information-indicating that samples close to each other in
high-dimensional space also remain close in low-dimensional
space, they have overlooked the exploration of the intrinsic
locality of the feature space. Specifically, the capacity for fea-
tures to be sparsely represented by similar features is a crucial
aspect that could enhance feature selection performance.

To address the aforementioned issues, we propose a novel
MUFS method named UNified view Imputation and Feature
selectIon lEaRning (UNIFIER), which consists of three key
components: 1) An adaptive dual-graph learning module that
selects discriminative features by leveraging the local struc-
tures of both the feature and sample spaces. 2) A bi-level
cooperative missing view completion module that effectively
utilizes local structure graphs at both the feature and sample
levels to impute missing views in samples. 3) A dynamic
sample quality assessment module that automatically weighs
samples to mitigate the effects of outliers and unreliable re-
stored data. Fig. 1 illustrates the framework of the proposed
method UNIFIER. The main contributions of this paper are
as follows:

• To the best of our knowledge, this is the first work to
integrate multi-view unsupervised feature selection and
missing view imputation into a unified learning frame-
work, enabling a seamless synergy between these two
processes that culminates in enhanced feature selection
performance.

• Simultaneous investigation of the local structures in both
the feature and sample spaces is conducted to facilitate
missing view imputation and discriminative feature se-
lection. Additionally, a dynamic sample quality assess-
ment based on half-quadratic minimization is proposed,
which can alleviate the impact of outliers and unreliable
restored data.

• An efficient alternative iterative algorithm is developed
to solve the proposed UNIFIER method, and compre-
hensive experimental results demonstrate the superiority
of UNIFIER over several state-of-the-art (SOTA) meth-
ods.

2 Proposed Method
We first summarize some notations throughout this paper.
For any matrix M = (mij) ∈ Rp×q , the i-th row and
the j-th column of M are denoted as mi· and m·j , respec-
tively. Its Frobenius norm and `2,1-norm are respectively

defined as ‖M‖F =
√∑p

i=1

∑q
j=1m

2
ij and ‖M‖2,1 =∑p

i=1

√∑q
j=1m

2
ij . Tr(M) and M> represent the trace and

transpose of M, respectively. In the following, we will in-
troduce three modules of the proposed method UNIFIER in
detail.

Adaptive Dual-graph Learning for MUFS. Given a
multi-view dataset X = {X(v) ∈ Rn×dv}Vv=1, where X(v)
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Figure 1. The framework of the proposed method UNIFIER.

represents the feature matrix of the v-th view, n and dv de-
note the number of samples and dimensions of X(v), and V
is the number of views. In order to select discriminative fea-
tures from the given multi-view dataset, a comprehensive ex-
ploration of the local structures within both the feature and
sample spaces is conducted. By extending the concept of da-
ta self-representation [Liu et al., 2021b] to the feature level, it
is reasonable to assume that each feature can be reconstruct-
ed by a linear combination of a small set of representative
features. This can be formalized as follows:

min
W(v)

V∑
v=1

‖X(v) −X(v)W(v)‖2F + λ‖W(v)‖2,1, (1)

where W(v)∈ Rdv×dv is the sparse representation graph or
feature weight matrix in the v-th view. The i-th row of Wv

indicates the contribution of the i-th feature x
(v)
·i to the re-

construction of all other features, thereby reflecting the im-
portance of the i-th feature in Xv . Moreover, we employ the
`2,1-norm regularization ‖W(v)‖2,1 to induce sparsity within
Wv , which encourages the weights of less significant fea-
tures to approach zero. Consequently, each feature is selec-
tively associated with only the most representative features,
effectively capturing the local structure of the feature space.

Furthermore, according to the spectral graph theory [Dong
et al., 2012], if two samples x

(v)
i· and x

(v)
j· are similar in

high-dimensional space, they will also be similar in low-
dimensional space. This allows us to preserve the local ge-
ometric structure of the sample space by adaptively learning
the nearest neighborhood graph, which can be formulated as
follows:

min
W(v),S(v)

V∑
v=1

n∑
i,j=1

‖x(v)
i· W

(v)−x(v)
j· W

(v)‖22s
(v)
ij +ξv‖S(v)‖2F

s.t. s(v)
ii = 0, s

(v)
ij ≥ 0,1>s

(v)
·i = 1, ‖s(v)

·i ‖0 = k,
(2)

where S(v) is the similarity matrix of the v-th view and ξv
is a regularization parameter. The constraint ‖s(v)

·i ‖0 = k is
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enforced to ensure that x(v)
i· is exclusively connected to its k

nearest neighbors.
By combining Eqs. (1) and (2), we can obtain the following

adaptive dual-graph learning-based MUFS module:

min
W(v),S(v)

V∑
v=1

[
α(v)‖X(v)−X(v)W(v)‖2F + λ‖W(v)‖2,1

+
1

2

n∑
i,j=1

‖x(v)
i· W

(v) − x
(v)
j· W

(v)‖22s
(v)
ij + ξv‖S(v)‖2F

]
s.t. s(v)

ii = 0, s
(v)
ij ≥ 0,1>s

(v)
·i = 1, ‖s(v)

·i ‖0 = k,
(3)

where α(v) is the view weight. Eq. (3) can simultaneously use
the local structure information of both the feature and sample
spaces to improve the feature selection performance.
Bi-level Cooperative Missing View Completion. In the
context of an incomplete multi-view scenario, where some
samples are present in certain views but absent in others, we
use X̊(v) ∈ Rm×dv and Ẋ(v) ∈ R(n−m)×dv to represent the
feature matrices of missing samples and available samples in
X(v), respectively. Unlike these two-step methods, which se-
quentially address missing value imputation followed by fea-
ture selection, we integrate feature selection and missing view
imputation into a unified optimization process. To this end,
we incorporate the missing data as a variable into the learn-
ing process described by Eq. (3), which will undergo alter-
nate optimization with other variables until convergence. The
corresponding objective function is presented below.

min
W(v),X̊(v),S(v)

V∑
v=1

[
α(v)‖X̃(v)−X̃(v)W(v)‖2F +λ‖W(v)‖2,1

+
1

2

n∑
i,j=1

‖x̃(v)
i· W

(v) − x̃
(v)
j· W

(v)‖22s
(v)
ij + ξv‖S(v)‖2F

]
s.t. X̃(v) = K̇(v)Ẋ(v) + K̊(v)X̊(v), s

(v)
ii = 0, s

(v)
ij ≥ 0,

1>s
(v)
·i = 1, ‖s(v)

·i ‖0 = k,
(4)

where K̊(v) ∈ Rn×m and K̇(v) ∈ Rn×(n−m) serve as two in-
dicator matrices, and m denotes the number of missing sam-
ples. These matrices are used to project the learned missing
samples and available samples into a complete multi-view da-
ta X̃(v), and their specific definitions are as follows:

K̇
(v)
ij =

{
1, if x(v)

i· corresponds to ẋ
(v)
j·

0, otherwise.

K̊
(v)
ij =

{
1, if x(v)

i· corresponds to x̊
(v)
j·

0, otherwise.

(5)

In Eq. (4), the missing data X̊(v) is imputed with collabora-
tive guidance from the sample-level and feature-level graphs
obtained from Eq. (3). This imputation, in turn, enhances the
learning of local both sample and feature structures. These
two processes boost each other in an interplay manner to re-
cover incomplete multi-view data and achieve better feature
selection performance.

Dynamic Sample Quality Assessment. Due to the sensi-
tivity of the Frobenius norm-based loss function to outlier-
s [Nie et al., 2010], we adopt the Geman-McClure estimator
L(z) = γz2

γ+z2 (γ is the scale parameter) [Barron, 2019] as the
loss function in Eq. (4), aiming to reduce the influence of out-
liers. However, the objective function based on the Geman-
McClure loss function is difficult to solve. To cope with this,
we replace L(z) with the following equivalent expression ac-
cording to the half-quadratic minimization theory [Nikolova
and Chan, 2007].

min
z
L(z) =

γz2

γ + z2
⇐⇒ min

z,e
{ez2 + ψ(e)} (6)

where e is an auxiliary variable, and ψ(e) = γ(
√
e − 1)2 is

the dual potential function of Geman-McClure loss function.
Then, the final objective function of the proposed UNIFI-

ER is formulated as

min
Θ

V∑
v=1

[
α(v)

n∑
i=1

(
e

(v)
i ‖x̃

(v)
i· −x̃

(v)
i· W

(v)‖22+γv(

√
e

(v)
i −1)2

)

+
1

2

n∑
i,j=1

‖x̃(v)
i· W

(v) − x̃
(v)
j· W

(v)‖22s
(v)
ij + ξv

n∑
i=1

‖s(v)
·i ‖

2
2

+ λ‖W(v)‖2,1
]

s.t. X̃(v) = K̇(v)Ẋ(v) + K̊(v)X̊(v), s
(v)
ii = 0, s

(v)
ij ≥ 0,

1>s
(v)
·i = 1, ‖s(v)

·i ‖0 = k,
(7)

where Θ={W(v), X̊(v),S(v), e(v)|v = 1 . . . n}, and e(v) =

[e
(v)
1 , e

(v)
2 , . . . , e

(v)
n ]T ∈ Rn×1.

In Eq. (7), e(v)
i can assess the quality of the i-th sample

x̃
(v)
i· based on the optimization result in Eq. (18). Specifical-

ly, if x̃(v)
i· is an outlier or an unreliable restored sample, the

reconstruction error ‖x̃(v)
i· − x̃

(v)
i· W

(v)‖22 will be large. As
a result, the corresponding weight of x̃(v)

i· will be small, and
vice versa. Furthermore, e(v)

i is updated adaptively, enabling
the automatic assignment of weights to samples of varying
qualities.

3 Optimization
Since Eq. (7) is not jointly convex to all four groups of vari-
ables, including W(v), X̊(v),S(v) and e(v), we propose to op-
timize them alternatively, i.e., by fixing three groups of vari-
ables and optimizing the remaining one alternately.
Update W(v) by Fixing Others. When other variables are
fixed, the objective function w.r.t. W(v) becomes:

min
W(v)

α(v)
n∑
i=1

e
(v)
i ‖x̃

(v)
i· − x̃

(v)
i· W

(v)‖22 + λ‖W(v)‖2,1

+
1

2

n∑
i,j=1

‖x̃(v)
i· W

(v) − x̃
(v)
j· W

(v)‖22s
(v)
ij

(8)
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Algorithm 1 Iterative Algorithm of UNIFIER

Input:Incomplete multi-view data {X(v) ∈ Rn×dv}Vv=1; the
parameters α(v) and λ; the number of selected features h.

1: Initialize D(v), e(v), X̊(v) and S(v) (v = 1, . . . , V ).
2: while not convergent do
3: Update {W(v)}Vv=1 via Eq. (10);

4: Update {D(v)(i, i) = 1/(2

√
‖w(v)

i· ‖22 + ε)}Vv=1;

5: Update {X̊(v)}Vv=1 by solving Eq. (13);
6: Update {S(v)}Vv=1 via Eq. (16);
7: Update {e(v)}Vv=1 via Eq. (18);
8: end while

Output:Sorting the `2-norm of the rows of {W(v)}Vv=1 in
descending order and selecting the top h features from X(v).

By using the matrix trace property, we can optimize prob-
lem (8) by solving its equivalent form:

min
W(v)

α(v)‖E(v)(X̃(v)−X̃(v)W(v))‖2F+λTr(W(v)>D(v)W(v))

+ Tr
(
W(v)>X̃(v)>L(v)X̃(v)W(v)

)
(9)

where D(v) is a diagonal matrix with its i-th diagonal en-

try given by D(v)(i, i) = 1/2

√
‖w(v)

i· ‖22 + ε ( ε is a small
constant to prevent the denominator from vanishing, ε is set
to 10−20 in the experiment), L(v) is the Laplacian matrix of
S(v), and E(v) = diag(

√
e(v)).

By taking the derivative of Eq. (9) w.r.t. W(v) and setting
it to zero, we can obtain the solution of W(v) as follows:

W(v) = α(v)
(
C(v) + λD(v)

)−1

X̃(v)>E(v)E(v)>X̃(v)

(10)
where C(v) = α(v)X̃(v)>E(v)E(v)>X̃(v) + X̃(v)>L(v)X̃(v).

Update X̊(v) by Fixing Others. After fixing the other vari-
ables, the objective function w.r.t. X̊(v) is reduced to:

min
X̊(v)

α(v)
n∑
i=1

e
(v)
i ‖x̃

(v)
i· − x̃

(v)
i· W

(v)‖22

+
1

2

n∑
i,j=1

‖x̃(v)
i· W

(v) − x̃
(v)
j· W

(v)‖22s
(v)
ij

s.t. X̃(v) = K̇(v)Ẋ(v) + K̊(v)X̊(v)

(11)

Incorporating the equality constraint X̃(v) = K̇(v)Ẋ(v) +

K̊(v)X̊(v) into the objective function and removing the irrel-
evant terms w.r.t X̊(v), we can reformulate problem (11) as
follows:

min
X̊(v)

Tr{α(v)[2R(v)>X̊(v)(I+W(v)W(v)>−W(v)−W(v)>)

+X̊(v)>K̊(v)>H(v)K̊(v)X̊(v)(I+W(v)W(v)>−2W(v))]+

W(v)>(2Ẋ(v)>K̇(v)>+ X̊(v)>K̊(v)>)L(v)K̊(v)X̊(v)W(v)},
(12)

where H(v) = E(v)E(v)> , R(v) = K̊(v)>H(v)K̇(v)Ẋ(v).
Taking the derivative of Eq. (12) w.r.t. X̊(v) and setting it

to zero, we can obtain:

A(v)X̊(v)W(v)W(v)>+ P(v)X̊(v)Q(v) = F(v), (13)

where A(v) = K̊(v)>L(v)K̊(v), Q(v) = I − W(v) −
W(v)>+W(v)W(v)> , P(v) = α(v)K̊(v)>H(v)K̊(v), F(v) =

−α(v)R(v)Q(v) − K̊(v)>L(v)K̇(v)Ẋ(v)W(v)W(v)> . Prob-
lem (13) is a generalized Sylvester matrix equation, which
can be solved according to the method proposed in [Zhang
and Yin, 2017].
Update S(v) by Fixing Others. By fixing the other vari-
ables, the optimization problem w.r.t S(v) in Eq. (7) becomes
independent for different i, allowing us to optimize S(v) by
separately solving each s

(v)
·i as follows:

min
s
(v)
·i

1

2

n∑
j=1

‖x̃(v)
i· W

(v) − x̃
(v)
j· W

(v)‖22s
(v)
ij + ξv

∥∥∥s(v)
·i

∥∥∥2

2

s.t. s(v)
ii = 0, s

(v)
ij ≥ 0,1>s

(v)
·i = 1, ‖s(v)

·i ‖0 = k,
(14)

By defining a vector b
(v)
i with the j-th entry as b(v)

ij =
1
2‖x̃

(v)
i· W

(v)−x̃(v)
j· W

(v)‖22, problem (14) can be transformed
into:

min
s
(v)
·i

1

2

∥∥∥s(v)
·i + b

(v)
i /2ξv

∥∥∥2

2

s.t. s(v)
ii = 0,s

(v)
ij ≥ 0,1>s

(v)
·i = 1, ‖s(v)

·i ‖0 = k.

(15)

Then, following the same derivation process in [Nie et al.,
2019], we can get the optimal solution of s(v)

ij as follows:

s
(v)
ij =

 b
(v)
i,k+1−b

(v)
ij

kb
(v)
i,k+1−

∑k
t=1 b

(v)
it

j ≤ k
0 j > k

(16)

Besides, the regularization parameter ξv is determined as
(kb

(v)
i,k+1−

∑k
t=1 b

(v)
it )/2 to ensure that s(v)

·i only has k nonze-
ro entries.
Update e(v) by Fixing Others. When other variables are
fixed, the objective function w.r.t. e(v) becomes:

min
e(v)

n∑
i=1

(
e

(v)
i ‖x̃

(v)
i· − x̃

(v)
i· W

(v)‖22 + γv(

√
e

(v)
i − 1)2

)
(17)

By taking the derivative of Eq. (17) w.r.t. e(v)
i and setting

it to zero, we can get the solution of e(v)
i as follows:

e
(v)
i =

(
γv

γv + ‖x̃(v)
i· − x̃

(v)
i· W

(v)‖22

)2

(18)

Algorithm 1 summarizes the detailed steps to solve Eq. (7).
In Algorithm 1, D(v) is initialized as an identity matrix, e(v)

i

is set as 1/n for all views, {X̊(v)}lv=1 is initialized by the
mean values of Ẋ(v), and S(v) is initialized by constructing
the k-nearest neighbor graph according to [Li et al., 2019].
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4 Algorithm Analysis
Time complexity analysis. In Algorithm 1, the updates for
W(v), X̊(v), S(v) and ev are performed alternately. In each
iteration, updating W(v) costs O(max(n, dv)ndv + d3

v) and
updating X̊(v) costsO((max(m, dv)mdv)t), where t denotes
the iteration number of conjugate gradient descent. The up-
dates of S(v) and ev only involve element-based operations,
thus their computational cost can be ignored. In summa-
ry, the time complexity of each iteration in Algorithm 1 is
O(
∑V
v=1[(max(n, dv)ndv + (max(m, dv)mdv)t+ d3

v)]).

Convergence analysis. Following the similar derivation in
[Hou et al., 2013], it is easy to demonstrate that updating
W(v) by solving problem (9) leads to a monotonic decrease
in the objective value of Eq. (7). Besides, the convergence of
optimizing X̊(v) can be guaranteed according to [Zhang and
Yin, 2017]. Moreover, the closed-form solutions of Eqs. (16)
and (18) demonstrate the convergence of the updates for S(v)

and e(v). Thus, the objective function value of Eq. (7) will
monotonically decrease in each iteration until convergence.

5 Experiments
Datasets. We evaluate the performance of the proposed
UNIFIER on six real-world multi-view datasets, including
two text datasets: BBCSport [Wen et al., 2019] and B-
BC4views [Chen et al., 2021]; a face image dataset: Yale [Li-
u et al., 2021a]; two object image datasets: Aloi [Rocha and
Goldenstein, 2013] and Caltech101-20 [Huang et al., 2019];
and a handwritten digit image dataset: USPS2View [Liu et
al., 2016]. A detailed description of the datasets is summa-
rized in Table 1. To simulate the incomplete multi-view set-
ting, we follow the method in [Lin et al., 2022] by randomly
removing bn×rc instances from each view, with r represent-
ing the missing data ratio and b·c denoting the round-down
operator. In the experiment, we vary the value of r over the
range of {0.1, 0.15, 0.2, 0.25, 0.3}.
Comparison methods. We compare UNIFIER with the
following SOTA methods:

1) AllFea utilizes all the original features.
2) LPscore [He et al., 2005] measures the importance of

each feature by considering the locality-preserving power.
3) EGCFS [Zhang et al., 2020] embeds between-class s-

catter matrix maximization into adaptive graph learning.
4) NSGL [Bai et al., 2020] simultaneously learns the sim-

ilarity graph and pseudo labels to select features.
5) HMUFS [Shen et al., 2020] utilizes an indicator matrix

to exclude unobserved data from feature selection.

Datasets Abbr. ViewsInstances Features Classes
BBCSport BBCS 4 116 1991/2063/2113/2158 5
Yale Yale 3 165 4096/3304/6750 15
BBC4views BBC4 4 685 4659/4633/4665/4684 5
Aloi Aloi 4 1869 77/13/64/64 17
Caltech101-20 Cal20 6 2386 48/40/254/1984/512/928 20
USPS2View USPS 2 5427 256/32 5

Table 1. Dataset description
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Figure 2. ACC of different methods on six datasets under different
feature selection ratios.
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Figure 3. NMI of different methods on six datasets under different
feature selection ratios.

6) FSDK [Nie et al., 2023] proposes a fast sparse discrim-
inative K-means method for feature selection.

7) CVFS [Xu et al., 2021] combines Hilbert-Schmidt Inde-
pendence Criterion to perform cross-view feature selection.

8) CvLP-DCL [Tang et al., 2021] learns cross-view simi-
larity graphs for feature selection.

9) TLR-MFS [Yuan et al., 2022] uses tensor low-rank reg-
ularization to learn similarity graphs and select features.

10) JMVFG [Fang et al., 2023] integrates feature selection
and multi-view graph learning into a unified framework.

11) CFSMO [Cao and Xie, 2024] introduces multi-order
similarity learning for the selection of relevant features.

Since most comparison methods cannot be directly utilized
with incomplete data, we fill the missing data with the mean
values of features before employing these methods. To en-
sure a fair comparison, we tune the parameters of all meth-
ods using a grid search strategy and report the best perfor-
mance. The parameters α(v) and λ of our method are set
within the range of {10−3, 10−2, 10−1, 1, 10, 102, 103}. To
simplify, the weight parameters for each view are set to be the
same and the scale parameter γv of Geman-McClure function
is set to 1. As determining the optimal number of selected
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Methods BBCS Yale BBC4 Aloi Cal20 USPS

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
UNIFIER 71.55 54.26 61.21 59.66 68.76 47.45 74.91 78.74 67.48 55.32 62.87 41.93
AllFea 31.90 5.47 38.79 40.96 33.14 5.80 43.02 47.01 64.67 51.63 27.55 3.69
LPscore 37.07 12.96 48.48 52.09 44.67 11.24 17.98 20.31 47.57 37.00 27.31 6.79
EGCFS 49.14 28.86 33.33 38.27 37.08 3.73 17.28 14.43 41.16 27.33 27.40 7.12
HMUFS 56.90 30.89 52.73 53.48 42.63 16.88 68.33 72.50 65.47 53.99 57.01 35.20
FSDK 65.00 51.39 51.30 51.31 47.63 31.02 68.35 70.27 65.72 51.92 55.92 33.72
NSGL 58.62 34.00 56.97 55.64 42.63 17.06 61.16 63.59 65.21 52.45 57.71 37.68
CVFS 55.17 31.12 55.76 54.98 32.99 18.75 47.87 19.33 63.79 50.34 56.13 36.14
CvLP-DCL 51.72 26.24 49.09 52.39 33.14 16.39 63.62 67.66 65.93 51.36 58.95 37.96
TLR-MFS 67.24 49.97 52.12 52.21 55.47 30.16 69.40 71.00 65.13 50.67 61.27 39.69
JMVFG 66.38 45.67 52.73 56.31 55.47 34.36 63.90 64.84 65.30 51.65 60.20 39.17
CFSMO 57.41 39.82 50.30 54.57 39.99 29.55 62.38 66.57 63.29 52.73 50.55 31.69

Table 2. Means (%) of ACC and NMI of different methods on six datasets with missing ratio 0.2 while selecting 40% of all features.
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Figure 4. ACC of different methods on six datasets under different
missing rate.

features is still a challenging problem, we vary the proportion
of selected features from {0.1, 0.2, 0.3, 0.4, 0.5}. We adopt a
commonly used approach to assess MUFS [Tang et al., 2021;
Zhang et al., 2019], employing clustering performance to e-
valuate the quality of selected features. In this paper, we
run the graph-based multi-view clustering algorithm (GM-
C) [Wang et al., 2019] 30 times on the selected features and
use two widely recognized metrics, namely clustering accura-
cy (ACC) and normalized mutual information (NMI), to mea-
sure performance. As GMC is not sensitive to initialization,
we only present the average results and omit the standard de-
viation.

Performance Comparison Table 2 summarizes the per-
formance of UNIFIER and other compared methods on six
benchmark datasets, where we achieve the best ACC and N-
MI in all cases. As can be seen, on two text datasets BBC-
S and BBC4, UNIFIER outperforms other competitors with
average improvements of 21.91% and 24.89% in terms of
ACC and NMI, respectively. For two object image dataset-
s Aloi and Cal20, UNIFIER achieves average improvements
of 14.08% and 16.64% in ACC and NMI, respectively. And
in terms of ACC and NMI, the average improvements of U-
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Figure 5. NMI of different methods on six datasets under different
missing rate.

NIFIER on the handwritten image dataset USPS are 13.78%
and 13.85%, respectively. Additionally, for the face image
dataset Yale, UNIFIER continues to outperform other com-
pared methods, respectively showing average improvements
of 11.97% and 8.55% in ACC and NMI.

Furthermore, to comprehensively validate the effectiveness
of UNIFIER, we also present the results of all methods across
various feature selection ratios and missing ratios. In Figs.
2 and 3, the x-axis (FR) denotes the feature selection ratio,
while the y-axis represents the ACC and NMI values of com-
parative methods, respectively, with the missing ratio fixed
at 0.2. It can be observed that UNIFIER yields the best per-
formance in most cases compared with other methods when
feature selection ratio varies from 0.1 to 0.5. Additionally,
in Figs. 4 and 5, the x-axis (MR) indicates the missing ra-
tio, while the y-axis shows the ACC and NMI results of the
comparison methods, respectively, with a fixed feature selec-
tion ratio of 0.4. As observed, UNIFIER consistently out-
performs other comparison methods in most situations. The
superior performance of the proposed method is attributed to
the integration of feature selection, missing view imputation,
and exploration of local structures within both sample and

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4197



feature spaces in a unified learning framework, where these
three components mutually enhance each other. Additionally,
the dynamic sample quality assessment module in UNIFIER
helps mitigate the impact of unreliable restored data and out-
liers.

Parameters Sensitivity and Convergence The objective
function in Eq.(7) involves three parameters: α(v), λ, and ξv .
The regularization parameter ξv is automatically determined
during the process of solving S(v) in Eq.(16). Hence, we only
investigate the performance variation of our method at differ-
ent values of α(v) and λ. Fig. 6 shows how the ACC and NMI
results of our method vary with different parameter combi-
nations. We can observe that the parameter λ is somewhat
sensitive for our method, while the parameter α(v) exhibit-
s even more sensitive than λ. Moreover, in most cases, our
method achieves prominent performances with the parameter
combinations of α(v)=0.01 or 0.001 and λ=100. Therefore,
we can empirically fine-tune α(v) and λ based on the smaller
range discussed previously. Fig. 7 illustrates the variation in
the objective values of Eq.(7) across different iterations on the
BBCS and USPS datasets. It is evident that the proposed op-
timization algorithm converges rapidly within 20 iterations.

Ablation Study In this section, we conduct ablation exper-
iments to show the significance of the component terms in the
proposed UNIFIER. Two variants of UNIFIER are conducted
as follows:

(1) UNIFIER-I (without the bi-level collaborative missing
view completion module):

min
Θ

V∑
v=1

[
α(v)

n∑
i=1

(
e

(v)
i ‖x

(v)
i· −x

(v)
i· W

(v)‖22+γ(
√
e(v)−1)2

)
+

1

2

n∑
i,j=1

‖x(v)
i· W

(v) − x
(v)
j· W

(v)‖22s
(v)
ij + ξv‖S(v)‖2F

]
(19)

In UNIFIER-I, the missing samples in X(v) are first filled
with the means of the features, followed by the same feature
selection process as in UNIFIER.

(2) UNIFIER-II (without the dynamic sample quality as-
sessment module):

min
Θ

V∑
v=1

[
α(v)

n∑
i=1

‖x̃(v)
i· − x̃

(v)
i· W

(v)‖22 + λ‖W(v)‖2,1

+
1

2

n∑
i,j=1

‖x̃(v)
i· W

(v) − x̃
(v)
j· W

(v)‖22s
(v)
ij + ξv‖S(v)‖2F

]
(20)

Table 3 shows the ablation experiment results on six
datasets. We can observe a significant decrease in the perfor-
mance of UNIFIER-I compared to UNIFIER in terms of AC-
C and NMI. This underscores the benefit of integrating fea-
ture selection with missing view completion to improve per-
formance. Furthermore, UNIFIER outperforms UNIFIER-II,
highlighting the effectiveness of the dynamic sample quality
assessment module in mitigating the influence of unreliable
restored data and outliers.

(a) ACC of UNIFIER (b) NMI of UNIFIER

Figure 6. ACC of UNIFIER with varying parameters α(v) and λ on
BBCS dataset.
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Figure 7. Object values of UNIFIER with different numbers of iter-
ations on BBCS and USPS datasets.

6 Conclusions
In this paper, we have proposed a novel MUFS method for
incomplete multi-view data, addressing the limitation of cur-
rent methods that treat missing data imputation and feature
selection as two separate processes. The proposed method
UNIFIER integrates feature selection, missing view comple-
tion, and the exploration of both local sample and feature
structures into a unified learning framework. Furthermore,
UNIFIER can automatically assign lower weights to low-
quality samples, which is beneficial for alleviating the impact
of unreliable restored data and outliers. Experiment results on
benchmark datasets demonstrated the superior performance
of UNIFIER compared with SOTA methods. In our future
work, we will extend our framework to conduct parallel and
incremental unsupervised feature selection on large-scale in-
complete multi-view datasets.

Datasets UNIFIER UNIFIER-I UNIFIER-II

ACC NMI ACC NMI ACC NMI
BBCS 71.55 54.26 63.79 42.90 58.62 42.17
Yale 61.21 59.66 53.94 55.37 59.01 57.53
BBC4 68.76 47.45 42.77 17.48 65.22 44.03
Aloi 74.91 78.74 42.37 47.53 72.98 73.51
Cal20 67.48 55.32 63.29 48.67 65.56 53.21
USPS 62.87 41.93 58.98 38.52 58.24 36.28

Table 3. Means (%) of ACC and NMI for different variants of UNI-
FIER on six multi-view datasets.
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