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Abstract
Existing Deep Multi-view Clustering (DMVC) ap-
proaches typically concentrate on capturing con-
sensus semantics from multiple views, where con-
trastive learning is widely used to align view-
specific representations of each view. Unfortu-
nately, view-specific representations are extracted
from the content information of the corresponding
instance, neglecting the relationships among dif-
ferent instances. Furthermore, existing contrastive
loss imports numerous false negative pairs that con-
flict with the clustering objectives. In response
to these challenges, we propose a contraStive
and viEw-interaction stRucture learning framework
for multI-viEw cluStering (SERIES). Our method
takes into account the structural relations among in-
stances and boosts the contrastive loss to improve
intra-class compactness. Meanwhile, a cross-view
dual relation generation mechanism is introduced
to achieve the consensus structural graph across
multiple views for clustering. Specifically, we ini-
tially acquire view-specific representations using
multiple graph autoencoders to exploit both content
information and structural information. Further-
more, to pull together the same cluster instances,
a soft negative pair aware contrastive loss is em-
ployed to distinguish the dissimilar instances while
attracting similar instances. Thereafter, the view-
specific representations are fed into cross-view dual
relation generation layers to generate the affinity
matrices of each other, aiming to reveal a consis-
tent structural graph across various views. Exten-
sive experiments conducted on six benchmarks il-
lustrate the superiority of our method compared to
other state-of-the-art approaches.

1 Introduction
In contemporary times, data originating from diverse do-
mains, sensors, or feature extractors is readily amassed owing
to the prevalence of network edge devices. Recent years have
witnessed notable success in Multi-view Clustering (MVC)
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[Wen et al., 2022], which enhances clustering performance
by integrating varied content information from multiple per-
spectives. MVC [Li et al., 2023; Wen et al., 2023c; Trosten et
al., 2023; Wen et al., 2023b] methods can be roughly divided
into graph-based [Tan et al., 2023], co-training [Kumar et al.,
2011], subspace-based [Tang et al., 2022], multiple kernels-
based [Liu et al., 2020], and deep learning-based [Xu et al.,
2023; Wen et al., 2023a] approaches respectively. Among
the numerous MVC methods, Deep Learning-based Multi-
view Clustering (DMVC) stands out for its superior perfor-
mance attributed to the remarkable representational capacity
of deep neural networks. For instance, Multi-VAE [Xu et
al., 2021] utilizes a deep generative network to disentangle
visual representations into view-common and view-specific
features, which are assumed to follow a discrete Gumbel
Softmax distribution and a continuous Gaussian distribution,
respectively. Completer [Lin et al., 2021] focuses on ac-
quiring complementary multiple representations through a
within-view reconstruction task. Simultaneously, it incorpo-
rates a contrastive task to leverage the consistency of multi-
ple representations extracted by view-specific deep encoders.
Although remarkable progress has been achieved by exist-
ing DMVC methods, they merely take advantage of multi-
view (content) information from the same sample, neglecting
to consider the topological relation (structure) information
among different samples. As an unsupervised representation
learning task, mining the intrinsic relationship of samples is
crucial for multi-view clustering. On the other hand, even
contrastive learning significantly improves the performance
of unsupervised representation learning, which recognizes all
of the other samples as negatives, importing many false neg-
ative pairs and increasing the intra-class distance.

In this paper, we propose a contrastive and view-interaction
structure learning framework for multi-view clustering (SE-
RIES) to address the aforementioned issues, as shown in Fig-
ure 1. SERIES aims to explore the structure relations among
different samples and decrease the intra-class distance, fi-
nally achieving a consistent structure graph for spectral clus-
tering. Specifically, we first utilize both the multi-view data
and structure graphs as the input of view-specific deep graph
autoencoders to learn multiple latent representations. Then,
the soft negative pair aware contrastive learning module in-
troduces a dynamic sample weighting strategy of negative
pairs to pull together similar samples while pushing apart
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the dissimilar samples in the feature space. According to the
view-specific representations, we use a cross-view dual rela-
tion generation mechanism to generate the structure graphs
for each other, which fully uncovers the consistent topologi-
cal structure across multiple views. Finally, the view-specific
structure graphs are integrated into a unified one for subse-
quent spectral clustering. The major contributions are sum-
marized as follows:

• We propose a contrastive and view-interaction structure
learning framework for multi-view clustering, which is
able to reveal the intrinsic structure of data points and
achieve a more compact cluster structure. Extensive ex-
periments are conducted to validate the efficacy of our
approach.

• Different from the existing DMVC methods, we simulta-
neously adopt view-specific graph autoencoders and de-
sign a cross-view dual relation generation mechanism to
capture the intrinsic structure of samples and model the
consistent structure graph for clustering.

• To reduce the intra-class distance, we propose a soft neg-
ative pair aware contrastive loss, which can utilize a dy-
namic sample weighting strategy to distinguish similar
samples from negative pairs.

2 Related Work
In recent years, advancements in multi-view clustering have
demonstrated improved performance through the exploration
of complementary information from various views. These
approaches can be broadly categorized into co-training,
subspace-based, multiple kernels-based, and graph-based
methods, respectively. Co-training multi-view clustering
[Kumar et al., 2011; Kumar et al., 2011] employs co-
regularization on clustering hypotheses to accomplish consis-
tent clustering across all views. Multi-view subspace cluster-
ing methods [Huang et al., 2022] usually project multi-view
data into a common subspace latent space, uncovering accu-
rate group information for a set of data points. Multiple ker-
nel clustering [Liu et al., 2023] involves computing several
kernel matrices for each view, mapping multi-view data into
a high-dimensional Hilbert space for clear data point sepa-
ration. Although these methods exhibit strong performance,
they often neglect the structural relations between instances.
In contrast, graph-based multi-view clustering methods con-
struct graphs for each view and execute spectral clustering on
the consensus graph, allowing for comprehensive capture of
topological structure information among instances.

Recently, Graph Neural Network (GNN) [Wu et al., 2020]
has drawn lots of attention for its capacity to uncover both
structure information and content information within sam-
ples. For instance, Graph Convolutional Network (GCN)
[Kipf and Welling, 2017] first extends convolutional neural
networks to graph structure data, which proposes a layer-
wise propagation rule to learn a hidden representation con-
taining both local topological and attributes of nodes. Con-
sidering assigning different importance to different nodes and
improving efficiency, graph attention networks [Velickovic et
al., 2018] introduce masked self-attentional layers into the

graph convolutional network to enhance aggregation capa-
bility. Owing to its adeptness in leveraging structural rela-
tionships, the GNN has been applied to multi-view cluster-
ing [Wen et al., 2020a; Wen et al., 2023d]. O2MGC [Fan et
al., 2020] is the first attempt to introduce GNN into MVC,
which learns the node representation from the structure graph
and node content information by GCN encoder and recon-
structs multiple graphs using various decoders. After that,
SGDMC [Huang et al., 2023] employs an attention-allocating
approach to compute node similarity, mitigating the negative
impact caused by noisy nodes.

3 Method
In this work, we propose a contrastive and view-interaction
structure learning framework for multi-view clustering,
which is composed of three submodules and the detailed
flowchart is illustrated in Figure 1.

3.1 View-specific Deep Graph Autoencoders
The primary limitation of previous deep multi-view cluster-
ing works is that the topological structure is not fully utilized.
In this work, we address this gap by employing graph neural
networks to propagate structure relations during the represen-
tation learning stage.

Given the multi-view data {Xv ∈ Rn×dv}mv=1 encom-
passes n samples and v views, where dv represents the
feature dimension of the v-th view, we explicitly construct
view-specific graphs {Av ∈ Rn×n}mv=1 using the k-Nearest
Neighbors (kNN) algorithm. Then, in order to learn the mul-
tiple representations containing both content and structure in-
formation, we introduce the graph autoencoder, which con-
sists of view-specific graph encoders and view-specific graph
decoders:

View-specific graph encoders. The graph encoders can
enhance view-specific representations by aggregating neigh-
bor information through structure graphs. Specifically, for
v-th view, we feed both feature matrix Xv and graph Av into
a multi-layer GCN to learn the instance-level latent represen-
tation Zv , and the computation of the l-th layer of GCN is
formulated as follows:

Z(v,l) = f (v,l)(Z(v,l−1), Âv; θv)

= ϕ(D̃
1
2
v Ã

vD̃
1
2
v Z

(v,l−1)W(v,l) + b(v,l))
(1)

where Ãv = Av + In ∈ Rn×n is the affinity matrix with
added self-connections, and D̃v

ii =
∑

j A
v
ij ∈ Rn×n denotes

the corresponding degree matrix. ϕ(·) is the activation func-
tion, W(v,l) and b(v,l) serve as parameters for the l-th GCN
layer. When l = 0, Z(v,0) corresponds to the original data
Xv of the v-th view, and the latent representation Z(v,1) is
obtained by:

Z(v,1) = ϕ(D̃
1
2
v Ã

vD̃
1
2
v X

vW(v,1) + b(v,1)) (2)

View-specific graph decoders. In order to guide the view-
specific representations to maintain the instance structure re-
lationship in the latent space, we employ view-specific graph

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5056



Figure 1: Overview of SERIES. In this figure, we use two view data as a showcase. As described in the figure, our model is composed of
three submodules: view-specific deep graph autoencoders, soft negative pair aware contrastive learning module, and cross-view dual relation
generation module. Concretely, the view-specific deep graph autoencoders are adopted to extract the latent representations {Zv}mv=1 that
contains both the content and graph information. The soft negative pair aware contrastive learning module is implemented to better pull
similar samples closer and push dissimilar samples farther away in the feature space. The cross-view dual relation generation module utilizes
both own and other views to generate the view-specific affinity matrix, exploring the consistent structure graph S. Finally, S is treated as the
input of the spectral clustering method to get clustering results.

decoders to reconstruct graph Âv . Specifically, the inner
product decoder is adopted to predict the links between in-
stance i and j, which can be formulated as:

Âv = sigmoid(ZvWvZvT

) (3)
The graph reconstruction error measuring the difference

between Âv and Av of all views can be calculated by:

Lg_rec =
1

m

m∑
v=1

∥∥∥Av − Âv
∥∥∥2
F

(4)

Meanwhile, to embed the content information of multi-
view data into instance latent representation Zv , the content
decoders are introduced to reconstruct X̂v . More specifically,
for the v-th view, a view-specific decoder network gv(·),
parametrized by µv , is employed to decode Zv into X̂v:

X̂v = gv(Zv;µv) (5)
The content reconstruction loss of all views is defined as

follows:

Lc_rec =
1

m

m∑
v=1

∥∥∥Xv − X̂v
∥∥∥2
F

(6)

3.2 Soft Negative Pair Aware Contrastive
Learning Module

As a key module of deep learning-based multi-view cluster-
ing methods, contrastive learning is adopted to align multi-
ple representations from different views of each instance and

learn the corresponding discriminative features. Specifically,
for mn samples {X1

1, . . . ,X
1
i , . . . ,X

m
i , . . . ,Xm

n }, standard
contrastive learning typically treats (Xv

i ,X
u
i ) as positive pair

and other mn − m samples to be negative pairs. However,
samples that belong to the same cluster should not be treated
as negative pairs, which conflicts with the purpose of the clus-
tering task. To address the problem, many works [Trosten
et al., 2021; Xia et al., 2023] introduce the pseudo labels to
remove within-class samples from negative pairs. Although
this adjustment mitigates the issue of false negative pairs, it is
difficult to achieve reliable pseudo-labels during the training
process, especially in the initial stage of training.

Different from previous works that categorize negative
pairs by hard pseudo-labels, we propose a soft negative pair
aware contrastive loss, aiming to bring correlated samples
closer while distinguishing uncorrelated ones. Specifically,
we introduce a weight modulating function ρ(·, ·) to dynam-
ically adjust the weights of the sample pairs during training.
Based on the view-specific latent representation Zv

i , ρ(·, ·)
can be defined as follows:

ρ(hv
i ,h

p
j ) = (1− s(hv

i ,h
p
j ))

β (7)

where hv
i is obtained by a view-shared project head hv

i =

σ(z
(v,l)
i ), and σ(·) is introduced to filter out the view-specific

noise. s(·, ·) is the similarity function, which can be com-
puted as s(hv

i ,h
p
j ) = (hv

i )
Thp

j . β ∈ [1, 5] is the penalty
factor employed to adjust the degree of penalization for both
uncorrelated samples and correlated samples. For instance,
when β = 2, the similarity of the correlated samples pair

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5057



is 0.8, but the corresponding weight is 0.04. In contrast, for
uncorrelated samples pair, the similarity is 0.1, while the re-
sulting weight is 0.81, which significantly surpasses 0.04.

According to the dynamic weight modulating function
ρ(·, ·), we formulate the soft negative pair aware contrastive
loss between view v and u as follows:

L(v,u)
cl = − 1

n

n∑
i=1

log
es(h

v
i ,h

u
i )/τ∑n

j=1

∑m
p=1e

ρ(hv
i ,h

u
j ))s(h

v
i ,h

p
j )/τ

(8)

where τ denotes the temperature parameter. The soft negative
pair aware contrastive loss across all views is defined as:

Lcl =
1

2

m∑
v=1

∑
v ̸=u

L(v,u)
cl (9)

3.3 Cross-view Dual Relation Generation Module
Through the graph autoencoders and the soft negative pair-
aware contrastive learning module, we can obtain discrimina-
tive feature Hv , which contains both the structure and con-
tent information. To fully fuse complementary information
across multiple views, we introduce a cross-view dual rela-
tion generation module in this subsection. This module gen-
erates view-specific affinity matrices by leveraging informa-
tion from both the target view and other views, facilitating the
exploration of a consistent topological structure graph.

Specifically, we first employ the self-relation generation
layer SR(·) to generate the affinity matrix Gv of v-th view,
which aims to represent each instance as a combination of
others from v-th view. The generation proposes is formulated
as follows:

Gv = SR(Hv,Ws) (10)

To explore the global structure of samples under the current
view, we minimize the following reconstruction loss:

Lv
sr = ∥Hv −HvGv∥2F (11)

Furthermore, to fully integrate the complementary infor-
mation across different views, we propose a dual-relation
generation layer DRu(·) to generate the affinity matrix
G(u,v) of v-th view, which can be formulated as:

G(u,v) = DRu(Hu,Wd) (12)

where G(u,v) is the affinity matrix generated by u-th view. It
utilizes the representations Hu from u-th views to represent
Hv , and the reconstruction loss is formulated as follows:

Lv
dr = ∥Hv −HuG(u,v)∥2F (13)

The overall reconstruction loss can be computed as fol-
lows:

Lv
str = Lv

sr +
1

m− 1

m∑
u=1,u ̸=v

Lu
dr (14)

Accordingly, the affinity matrix of v-th view is obtained
by:

Sv =
1

2
(Gv +

1

m− 1

m∑
u=1,u ̸=v

G(u,v)) (15)

In this way, the view-specific affinity matrix Sv has the
ability to fuse the complementary structure relations from
multiple views, and the consensus affinity matrix S is sim-
ply obtained by:

S =
1

m

m∑
v=1

S(v) (16)

3.4 The Overall Loss Function of SERIES
In summary, we have introduced a contrastive and view-
interaction structure learning framework for multi-view clus-
tering. In the training stage, the view-specific graph autoen-
coders, soft negative pair aware contrastive learning module,
and the dual relation generation module are jointly optimized
according to the following objective function:

L =
1

m

m∑
v=1

(Lv
g_rec + Lv

c_rec + λ1Lv
str) + λ2Lcl (17)

Finally, we obtain a desirable consensus affinity matrix S
and pass it through a spectral clustering algorithm to achieve
the final clustering result. The whole learning process of SE-
RIES is summarized in the Algorithm 1.

Algorithm 1 The Algorithm of SERIES

Input: Multi-view data {X(v)}mv=1; Training iterations T .
Process:
1. Construct the graphs for each view and obtain the view-
specific affinity matrices {A(v)}mv=1.
Pretrain:
2. Pertrain the deep graph autoencoders of each view by
optimizing Lv

g_rec, Lv
c_rec in Eq. 4 and 6.

Finetuning:
3. for epoch = 1 to T
4. Obtain the Zv,Gv,G

(u,v),Sv of each view by
Eqs. (1,10,12,15).

5. Update network parameters by using Adam to
minimize the objective in Eq. 17.

9. end for
return: The consensus affinity matrix S.
Perform spectral clustering using S.

4 Experiment
4.1 Experimental Settings
Datasets. The following datasets are carried out for evalua-
tion: (1) HW [Perkins and Theiler, 2003] consists of 2000
samples from 10 types of handwritten digits, all of which
are presented by two features. (2) Reuters [Amini et al.,
2009] comprises 6 categories, corresponding to 1200 articles,
and each article is written in 5 languages. (3) Noisymin-
ist [Wang et al., 2015] contains 70k instances described by
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Datasets HW Mfeat
Method ACC NMI PUR ARI P F-score ACC NMI PUR ARI P F-score
LMSC 0.7720 0.6504 0.7720 0.5931 0.6292 0.6339 0.7235 0.6190 0.7235 0.5326 0.5772 0.5793
MCGC 0.8775 0.8820 0.8780 0.8480 0.7925 0.8645 0.9540 0.9070 0.9540 0.9005 0.9083 0.9105
LMVSC 0.8195 0.7665 0.8195 0.6769 0.7337 0.7101 0.6550 0.6386 0.7461 0.5283 0.6218 0.5788
CDIMIC 0.8285 0.8982 0.7780 0.8199 0.8569 0.8793 0.8360 0.8882 0.8705 0.8145 0.8423 0.8588
SiMVC 0.8401 0.8448 0.7827 0.7959 0.8223 0.7757 0.8001 0.8407 0.8413 0.7563 0.7853 0.8047
CoMVC 0.9128 0.9042 0.8836 0.8862 0.9070 0.8689 0.7750 0.8243 0.8147 0.7207 0.761 0.7757
MFLVC 0.7830 0.7826 0.7830 0.6780 0.7174 0.7202 0.8300 0.8093 0.830 0.7358 0.7641 0.7674
CMGEC 0.7250 0.7009 0.7295 0.5467 0.7670 0.7290 0.7170 0.7388 0.7380 0.6341 0.6977 0.6951

DFP-GNN 0.9505 0.9024 0.9515 0.8936 0.9074 0.9076 0.9490 0.9070 0.8520 0.8900 0.9088 0.9082
SERIES 0.9665 0.9288 0.9665 0.9663 0.9367 0.9360 0.9655 0.9252 0.9665 0.9240 0.9348 0.9340
Datasets Noisyminist VOC
Method ACC NMI PUR ARI P F-score ACC NMI PUR ARI P F-score
LMSC 0.2734 0.2039 0.3038 0.1285 0.2113 0.2279 0.1837 0.1246 0.2822 0.0657 0.1693 0.1252
MCGC 0.4863 0.5399 0.4971 0.4063 0.3390 0.4930 0.2935 0.1387 0.2953 0.1116 0.1395 0.2337
LMVSC 0.3274 0.3027 0.5196 0.1603 0.3858 0.2699 0.1637 0.1357 0.1772 0.0523 0.0939 0.1142
CDIMIC 0.4812 0.4527 0.4857 0.3490 0.3858 0.4343 0.1855 0.1346 0.2857 0.0520 0.1519 0.1451
SiMVC 0.3831 0.3266 0.4109 0.2988 0.2923 0.2163 0.5376 0.5511 0.6640 0.4788 0.5533 0.4806
CoMVC 0.4141 0.4047 0.4667 0.3616 0.3469 0.2674 0.5151 0.5307 0.6435 0.4173 0.5358 0.4579
MFLVC 0.2497 0.2054 0.1905 0.0778 0.1905 0.2609 0.5249 0.4570 0.5304 0.3152 0.3566 0.4433
CMGEC OM OM OM OM OM OM 0.3234 0.3397 0.3987 0.1643 0.3004 0.1826

DFP-GNN 0.4649 0.4416 0.5566 0.2864 0.4051 0.3758 0.6113 0.5350 0.6375 0.4731 0.4998 0.4925
SERIES 0.5189 0.5275 0.5683 0.3896 0.4730 0.4789 0.7325 0.6867 0.7743 0.5516 0.7011 0.6521
Datasets Hdigit Reuters
Method ACC NMI PUR ARI P F-score ACC NMI PUR ARI P F-score
LMSC 0.6681 0.6207 0.7151 0.5269 0.5625 0.5753 0.4450 0.2635 0.4783 0.1985 0.3134 0.3449
MCGC 0.5814 0.6339 0.5816 0.5386 0.4488 0.6002 0.1850 0.0426 0.2075 0.0032 0.1673 0.2836
LMVSC 0.5482 0.5050 0.6045 0.3544 0.4937 0.4275 0.3692 0.1920 0.6192 0.1196 0.4907 0.3173
CDIMIC 0.5071 0.5412 0.5199 0.3584 0.4361 0.4820 0.1842 0.0565 0.3483 0.0030 0.1916 0.3182
SiMVC 0.7435 0.7638 0.7564 0.6893 0.6975 0.6541 0.2895 0.0615 0.3605 0.2060 0.2165 0.0474
CoMVC 0.8027 0.8244 0.8175 0.7680 0.7759 0.7349 0.2940 0.0659 0.3703 0.2087 0.2138 0.0488
MFLVC 0.9478 0.8834 0.9478 0.8885 0.9002 0.9003 0.4550 0.2371 0.455 0.1853 0.3236 0.3238
CMGEC 0.3149 0.1843 0.3564 0.1100 0.3283 0.3186 0.2200 0.0229 0.3333 0.0082 0.2359 0.2183

DFP-GNN 0.8847 0.8810 0.8919 0.8312 0.8414 0.8537 0.6042 0.3961 0.6558 0.2954 0.4557 0.4571
SERIES 0.9676 0.9232 0.9679 0.9300 0.9372 0.9372 0.6358 0.4134 0.6383 0.3131 0.4800 0.4840

Table 1: The clustering performance comparisons on six multi-view datasets.

2 views. In this study, we choose a subset of Noisyminist,
consisting of 15,000 instances from 10 classes, for the com-
parative experiment. (4) VOC [Hwang and Grauman, 2010]
is a two-view dataset that encompasses image-view and text-
view modalities, which consists of 5,649 instances distributed
across 20 distinct classes. (5) Hdigit [Chen et al., 2022] in-
cludes 10,000 instances categorized into 10 classes, whose
two views are crafted from both MNIST Handwritten Digits
and USPS Handwritten Digits. (6) Mfeat [Wang et al., 2019]
comprises 2000 instances from 10 subjects, with six features
extracted to form this multi-view dataset. The detailed infor-
mation is summarized in Table 2.

Metrics. We employ six widely used metrics to evalu-
ate our model, including Accuracy (ACC), Normalized Mu-
tual Information (NMI), Purity (PUR), Adjusted Rand Index
(ARI), Precision (P), and F-score. The specific definitions of
these metrics are explained in [Cao et al., 2015].

Baselines. Our proposed method is compared with nine
state-of-the-art methods, which are summarized as follows:

• LMSC [Zhang et al., 2017] utilizes a self-supervised
reconstruction task to acquire latent representations for

multiple views while concurrently investigating the in-
herent complementarity for MVC.

• MCGC [Zhan et al., 2019] dynamically learns a con-
sensus graph to reveal more robust relationship between
data points, which has exactly k connected components
aligning with the number of clusters.

• LMVSC [Kang et al., 2020] finds some representative
data points as anchors to construct anchor graphs, which
can present the global structure relations and are benefi-
cial to alleviate the computational issue.

• CDIMIC [Wen et al., 2020b] introduces the deep au-
toencoders and self-paced strategy to extract the high-
level features and reduce the negative impact of outliers.

• SiMVC [Trosten et al., 2021] is a simple deep MVC
model obtaining a fused representation by weighted av-
erage multiples representations, which is proposed to
prioritize views in the feature space.

• CoMVC [Trosten et al., 2021] extends SiMVC by in-
corporating a contrastive alignment mechanism, which
aims at increasing the distance between distinct clusters.
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• MFLVC [Xu et al., 2022] utilizes contrastive regular-
ization terms to align the instance-level and cluster-level
representations, which aims to explore multi-view con-
sistency.

• CMGEC [Wang et al., 2021] is a graph-based deep
multi-view clustering method, which considers the
structure information among samples and introduces a
mutual information maximization module to discover
the consistent topological structure.

• DFP-GNN [Xiao et al., 2023] adopts GNN models and
a new dual fusion mechanism to learn a unified represen-
tation, which combines both content and structure infor-
mation across different views.

Implementations. All experiments are conducted on
a Linux platform utilizing an Intel(R) Core(TM) i9-11900
2.50GHz CPU, 64GB RAM, and GeForce RTX 3090 Ti GPU.
The view-specific deep graph autoencoders are pre-trained
for 200 epochs, and the entire model is fine-tuned for an ad-
ditional 100 epochs. The dimensions of the encoders, de-
coders, and the cross dual relation generation layer are set to
{dv, 512, 2048, 256}, {256, 2048, 512, dv} and {256, dv} re-
spectively. The activation function is specified as ReLU. In
our study, the trade-off hyperparameters λ1, λ2 are selected
from the range {0.1, 0.2, . . . , 0.9, 1.0}. All other baselines
are implemented by the recommended network structure and
parameters for fair comparison.

(a) Mfeat(ACC) (b) Mfeat(NMI)

(c) VOC(ACC) (d) VOC(NMI)

Figure 2: Parameters sensitivity analysis: the clustering perfor-
mances (ACC, NMI) with different parameters λ1 and λ2 on VOC
and Mfeat datasets

4.2 Comparison Results
Table 1 reports the clustering results of our method and other
baselines on six datasets, where the best and the sub-optimal
performance are denoted in bold and underlined, respectively.
OM represent "Out-of-memory error". From the results, we

Datasets Samples Clusters Views View dimensions
HW 2000 10 6 216/76/64/6/240/47

Reuters 1200 6 5 2000/2000/2000/2000/2000
Noisyminist 15000 10 2 784/784

VOC 5649 20 2 512/399
Hdigit 10000 10 2 784/256
Mfeat 2000 10 6 216/76/64/6/240/47

Table 2: Statistical characteristics of six datasets.

Datasets Method ACC NMI PUR ARI

Mfeat

SERIES 0.9650 0.9252 0.9665 0.9240
SERIES-D 0.8385 0.8606 0.8655 0.7836

SERIES-SC 0.9090 0.8434 0.9100 0.8157
SERIES-C 0.8958 0.8565 0.8933 0.9074

VOC

SERIES 0.7325 0.6867 0.7743 0.5516
SERIES-D 0.7113 0.6761 0.7582 0.4756

SERIES-SC 0.7242 0.6807 0.7654 0.5323
SERIES-C 0.7247 0.6813 0.7663 0.5342

Table 3: Ablation study on VOC and Mfeat dataset.

have the following observations:
(1) Among all the compared methods, SERIES achieves

superior performance in most cases, and improvement of our
algorithm on some datasets is significant. For example, on
the VOC dataset, our algorithm surpasses the sub-optimal
algorithm SiMVC by 36.25%, 24.60%, 16.61%, 15.20%,
26.71%, 35.68% in terms of six metrics, respectively. For
Hdigit dataset, our algorithm improves 2.08%, 4.50%, 2.12%,
4.67%, 4.11%, 4.13% across six metrics compared to the
second-best DFP-GNN method. These observations validate
the excellent effectiveness of our model, which deeply inves-
tigates the topology structure between samples benefiting the
partition of similar samples into the same cluster.

(2) Compared with other state-of-the-art contrastive
learning-based multi-view clustering methods, i.e., CoMVC
and MFLVC, our method still shows significant advantages.
MFLVC treats all of the other samples as negative samples
which inevitably brings in some false negative pairs. CoMVC
introduces the pseudo-label information to guide the selec-
tion of positive and negative pairs, which heavily depends on
the quality of pseudo-labels. However, the contrastive loss
proposed in our method aims to mitigate the impact of false
negative pairs by introducing a dynamic weighting strategy,
which reduces the distance between relevant samples and in-
creases the distance between irrelevant samples.

(3) Observed from Table 1, the shallow methods are infe-
rior to the deep learning-based approaches in most cases, par-
ticularly on the VOC and Hdigit datasets. This discrepancy
can be attributed to the deep learning-based multi-view meth-
ods effectively capturing the intrinsic features of instances.
Notably, the graph-based method DFP-GNN, surpasses some
deep learning-based methods, indicating the significance of
exploring structural information between samples. Neverthe-
less, our approach consistently outperforms both other graph-
based and deep learning-based multi-view clustering methods
across all datasets. This consistency highlights the efficacy of
our cross-view dual relation generation module and soft neg-
ative pair aware contrastive learning module.
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(a) LMSC (b) MCGC (c) LMVSC (d) CDIMC

(e) MFLVC (f) CMGEC (g) DFP-GNN (h) SERIES

Figure 3: The visualizations of the consensus representation of LMSC, MCGC, LMVSC, CDIMIC, MFLVC, CMGCE, DFP-GNN, and
SERIES on Mfeat dataset.

4.3 Ablation Study
To verify the effectiveness of each submodule, we compare
our proposed SERIES with its degenerated methods to con-
duct the ablation study in this subsection. Concretely, in Ta-
ble 3 we analyze the following cases:

• SERIES-D: The affinity matrix Sv is only composed of
Gv , omitting the dual generation process in Eq. 12.

• SERIES-SC: SERIES w.o. the soft negative pair aware
contrastive loss in Eq. 8.

• SERIES-C: The soft negative pair aware contrastive
loss is replaced by the standard contrastive loss [Chen
et al., 2020], which treats all of the other samples as
negative pairs.

From the results in Table 3, we have two observations as
follows: (1) In comparison to SERIES-SC and SERIES-D,
SERIES exhibits the best performance, indicating that both
the soft negative pair aware contrastive learning module and
cross-view dual relation generation module enhance the per-
formance of the baselines. These modules facilitate the ex-
ploration of structural relations between instances and the
acquisition of instance intrinsic features. (2) The results of
SERIES-C are consistently lower than those of SERIES-SC
across all metrics on both Mfeat and VOC datasets. This ob-
servation indicates that our proposed soft negative pair aware
contrastive loss effectively mitigates the issue of false nega-
tive pairs. Unlike the standard contrastive loss which aims to
increase the distance between one sample and all other sam-
ples, our method focuses on dynamically adjusting the weight
according to the similarity of the samples, which is more suit-
able for the final clustering task.

4.4 Parameter Sensitivity Analysis
In this subsection, we analyze the hyper-parameters λ1 and
λ2 in our method on Mfeat and VOC datasets. Figure 2 illus-

trates the ACC and NMI of our approach as λ1 and λ2 vary
within the range of {0.1, · · · , 1.0}. As depicted in Figure
2, our method consistently demonstrates strong performance
across a broad range, particularly exhibiting promising results
when λ1 ∈ [0.1, 0.5] and λ2 ∈ [0.5, 1.0] on Mfeat and VOC
datasets.

4.5 Visualization Analysis

In this subsection, we utilize t-SNE [Van der Maaten and Hin-
ton, 2008] to visualize the final consensus representations in
our method and other compare methods. As shown in Fig-
ure 3, the consensus representation learned in our method is
more compact than others, which demonstrates our proposed
SERIES could better explore the cluster structure compared
with other baselines.

5 Conclusions

In this work, we propose a contrastive and view-interaction
structure learning framework for multi-view clustering,
named SERIES, to better reveal the structure relation be-
tween different instances. We first utilize the view-specific
graph autoencoders to achieve latent representations contain-
ing both content and graph information. Then, the soft neg-
ative pair aware contrastive learning module introduces a dy-
namic sample weighting strategy to alleviate the false neg-
ative pair problem, which could better learn discriminative
features for instances. Finally, to cluster samples with the
structure graph of samples, we adopt the cross-view dual re-
lation generation module to explore the consistent affinity
matrix across multiple views. The effectiveness of SERIES
has been verified on various multi-view datasets as compared
with other state-of-the-art methods.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5061



Acknowledgments
This work was supported by the Fundamental Research Funds
for the Central Universities (No.2022JBZY019), the Beijing
Natural Science Foundation (No. 4242046).

References
[Amini et al., 2009] Massih-Reza Amini, Nicolas Usunier,

and Cyril Goutte. Learning from multiple partially ob-
served views - an application to multilingual text catego-
rization. In Advances in Neural Information Processing
Systems, pages 28–36, 2009.

[Cao et al., 2015] Xiaochun Cao, Changqing Zhang, Huazhu
Fu, Si Liu, and Hua Zhang. Diversity-induced multi-view
subspace clustering. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 586–594, 2015.

[Chen et al., 2020] Ting Chen, Simon Kornblith, Moham-
mad Norouzi, and Geoffrey E. Hinton. A simple frame-
work for contrastive learning of visual representations.
In International Conference on Machine Learning, pages
1597–1607, 2020.

[Chen et al., 2022] Man-Sheng Chen, Jia-Qi Lin, Xiang-
Long Li, Bao-Yu Liu, Chang-Dong Wang, Dong Huang,
and Jian-Huang Lai. Representation learning in multi-
view clustering: a literature review. Data Science and En-
gineering, pages 225–241, 2022.

[Fan et al., 2020] Shaohua Fan, Xiao Wang, Chuan Shi,
Emiao Lu, Ken Lin, and Bai Wang. One2multi graph au-
toencoder for multi-view graph clustering. In Proceedings
of The Web Conference, pages 3070–3076, 2020.

[Huang et al., 2022] Shudong Huang, Yixi Liu, Ivor W
Tsang, Zenglin Xu, and Jiancheng Lv. Multi-view sub-
space clustering by joint measuring of consistency and di-
versity. IEEE Transactions on Knowledge and Data Engi-
neering, pages 8270–8281, 2022.

[Huang et al., 2023] Zongmo Huang, Yazhou Ren, Xiaorong
Pu, Shudong Huang, Zenglin Xu, and Lifang He. Self-
supervised graph attention networks for deep weighted
multi-view clustering. In Conference on Artificial Intel-
ligence, pages 7936–7943, 2023.

[Hwang and Grauman, 2010] Sung Ju Hwang and Kristen
Grauman. Accounting for the relative importance of ob-
jects in image retrieval. In BMVC, page 5, 2010.

[Kang et al., 2020] Zhao Kang, Wangtao Zhou, Zhitong
Zhao, Junming Shao, Meng Han, and Zenglin Xu. Large-
scale multi-view subspace clustering in linear time. In
Conference on Artificial Intelligence, pages 4412–4419,
2020.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Rep-
resentations, pages 1–14, 2017.

[Kumar et al., 2011] Abhishek Kumar, Piyush Rai, and Hal
Daume. Co-regularized multi-view spectral clustering.
Advances in Neural Information Processing Systems,
pages 1–9, 2011.

[Li et al., 2023] Haobin Li, Yunfan Li, Mouxing Yang, Peng
Hu, Dezhong Peng, and Xi Peng. Incomplete multi-view
clustering via prototype-based imputation. arXiv preprint,
pages 1–9, 2023.

[Lin et al., 2021] Yijie Lin, Yuanbiao Gou, Zitao Liu, Boyun
Li, Jiancheng Lv, and Xi Peng. Completer: Incomplete
multi-view clustering via contrastive prediction. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 11174–11183, 2021.

[Liu et al., 2020] Xinwang Liu, Miaomiao Li, Chang Tang,
Jingyuan Xia, Jian Xiong, Li Liu, Marius Kloft, and
En Zhu. Efficient and effective regularized incomplete
multi-view clustering. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, pages 2634–2646, 2020.

[Liu et al., 2023] Jiyuan Liu, Xinwang Liu, Yuexiang Yang,
Qing Liao, and Yuanqing Xia. Contrastive multi-view ker-
nel learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pages 9552–9566, 2023.

[Perkins and Theiler, 2003] Simon Perkins and James
Theiler. Online feature selection using grafting. In
International Conference on Machine Learning, pages
592–599, 2003.

[Tan et al., 2023] Yuze Tan, Yixi Liu, Hongjie Wu,
Jiancheng Lv, and Shudong Huang. Metric multi-view
graph clustering. In Conference on Artificial Intelligence,
pages 9962–9970, 2023.

[Tang et al., 2022] Kewei Tang, Kaiqiang Xu, Wei Jiang,
Zhixun Su, Xiyan Sun, and XiaoNan Luo. Selecting the
best part from multiple laplacian autoencoders for multi-
view subspace clustering. IEEE Transactions on Knowl-
edge and Data Engineering, pages 7457–7469, 2022.

[Trosten et al., 2021] Daniel J Trosten, Sigurd Lokse, Robert
Jenssen, and Michael Kampffmeyer. Reconsidering rep-
resentation alignment for multi-view clustering. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1255–1265, 2021.

[Trosten et al., 2023] Daniel J Trosten, Sigurd Løkse, Robert
Jenssen, and Michael C Kampffmeyer. On the effects of
self-supervision and contrastive alignment in deep multi-
view clustering. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 23976–23985, 2023.

[Van der Maaten and Hinton, 2008] Laurens Van der Maaten
and Geoffrey Hinton. Visualizing data using t-sne. Journal
of Machine Learning research, pages 2579–2605, 2008.

[Velickovic et al., 2018] Petar Velickovic, Guillem Cucurull,
Arantxa Casanova, and Adriana Romero. Graph attention
networks. In International Conference on Learning Rep-
resentations, pages 1–12, 2018.

[Wang et al., 2015] Weiran Wang, Raman Arora, Karen
Livescu, and Jeff Bilmes. On deep multi-view represen-
tation learning. In International Conference on Machine
Learning, pages 1083–1092, 2015.

[Wang et al., 2019] Hao Wang, Yan Yang, and Bing Liu.
Gmc: Graph-based multi-view clustering. IEEE Transac-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5062



tions on Knowledge and Data Engineering, pages 1116–
1129, 2019.

[Wang et al., 2021] Yiming Wang, Dongxia Chang,
Zhiqiang Fu, and Yao Zhao. Consistent multiple graph
embedding for multi-view clustering. IEEE Transactions
on Multimedia, pages 1008–1018, 2021.

[Wen et al., 2020a] Jie Wen, Ke Yan, Zheng Zhang, Yong
Xu, Junqian Wang, Lunke Fei, and Bob Zhang. Adap-
tive graph completion based incomplete multi-view clus-
tering. IEEE Transactions on Multimedia, pages 2493–
2504, 2020.

[Wen et al., 2020b] Jie Wen, Zheng Zhang, Yong Xu, Bob
Zhang, Lunke Fei, and Guo-Sen Xie. Cdimc-net: Cog-
nitive deep incomplete multi-view clustering network. In
International Joint Conference on Artificial Intelligence,
pages 3538–3542, 2020.

[Wen et al., 2022] Jie Wen, Zheng Zhang, Lunke Fei, Bob
Zhang, Yong Xu, Zhao Zhang, and Jinxing Li. A survey
on incomplete multiview clustering. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, pages 1136–
1149, 2022.

[Wen et al., 2023a] Jie Wen, Chengliang Liu, Shijie Deng,
Yicheng Liu, Lunke Fei, Ke Yan, and Yong Xu. Deep
double incomplete multi-view multi-label learning with in-
complete labels and missing views. IEEE Transactions
on Neural Networks and Learning Systems, pages 1–13,
2023.

[Wen et al., 2023b] Jie Wen, Chengliang Liu, Gehui Xu,
Zhihao Wu, Chao Huang, Lunke Fei, and Yong Xu. Highly
confident local structure based consensus graph learning
for incomplete multi-view clustering. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
15712–15721, 2023.

[Wen et al., 2023c] Jie Wen, Gehui Xu, Chengliang Liu,
Lunke Fei, Chao Huang, Wei Wang, and Yong Xu. Lo-
calized and balanced efficient incomplete multi-view clus-
tering. In ACM International Conference on Multimedia,
pages 2927–2935, 2023.

[Wen et al., 2023d] Jie Wen, Gehui Xu, Zhanyan Tang, Wei
Wang, Lunke Fei, and Yong Xu. Graph regularized and
feature aware matrix factorization for robust incomplete
multi-view clustering. IEEE Transactions on Circuits and
Systems for Video Technology, pages 1–14, 2023.

[Wu et al., 2020] Zonghan Wu, Shirui Pan, Fengwen Chen,
Guodong Long, Chengqi Zhang, and S Yu Philip. A com-
prehensive survey on graph neural networks. IEEE Trans-
actions on Neural Networks and Learning Systems, pages
4–24, 2020.

[Xia et al., 2023] Wei Xia, Tianxiu Wang, Quanxue Gao,
Ming Yang, and Xinbo Gao. Graph embedding con-
trastive multi-modal representation learning for cluster-
ing. IEEE Transactions on Image Processing, pages 1170–
1183, 2023.

[Xiao et al., 2023] Shunxin Xiao, Shide Du, Zhaoliang
Chen, Yunhe Zhang, and Shiping Wang. Dual fusion-

propagation graph neural network for multi-view cluster-
ing. IEEE Transactions on Multimedia, pages 1–13, 2023.

[Xu et al., 2021] Jie Xu, Yazhou Ren, Huayi Tang, Xiaorong
Pu, Xiaofeng Zhu, Ming Zeng, and Lifang He. Multi-vae:
Learning disentangled view-common and view-peculiar
visual representations for multi-view clustering. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 9234–9243, 2021.

[Xu et al., 2022] Jie Xu, Huayi Tang, Yazhou Ren, Liang
Peng, Xiaofeng Zhu, and Lifang He. Multi-level feature
learning for contrastive multi-view clustering. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 16051–16060, 2022.

[Xu et al., 2023] Jie Xu, Shuo Chen, Yazhou Ren, Xi-
aoshuang Shi, Heng Tao Shen, Gang Niu, and Xiaofeng
Zhu. Self-weighted contrastive learning among multiple
views for mitigating representation degeneration. In Con-
ference on Neural Information Processing Systems, pages
1–13, 2023.

[Zhan et al., 2019] Kun Zhan, Feiping Nie, Jing Wang, and
Yi Yang. Multiview consensus graph clustering. IEEE
Transactions on Image Processing, pages 1261–1270,
2019.

[Zhang et al., 2017] Changqing Zhang, Qinghua Hu,
Huazhu Fu, Pengfei Zhu, and Xiaochun Cao. Latent
multi-view subspace clustering. In IEEE Conference
on Computer Vision and Pattern Recognition, pages
4279–4287, 2017.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5063


	Introduction
	Related Work
	Method
	View-specific Deep Graph Autoencoders
	Soft Negative Pair Aware Contrastive Learning Module
	Cross-view Dual Relation Generation Module
	The Overall Loss Function of SERIES

	Experiment
	Experimental Settings
	Comparison Results
	Ablation Study
	Parameter Sensitivity Analysis
	Visualization Analysis

	Conclusions

