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Abstract
Markovian stochastic approximation has recently
aroused a great deal of interest in many fields; how-
ever, it is not well understood in decentralized set-
tings. Decentralized Markovian stochastic approxi-
mation is far more challenging than its single-agent
counterpart due to the complex coupling structure
between decentralized communication and Marko-
vian noise-corrupted local updates. In this paper, a
decentralized local markovian stochastic approxi-
mation (DLMSA) algorithm has been proposed and
attains a near-optimal convergence rate. Specifi-
cally, we first provide a local variant of decentral-
ized Markovian stochastic approximation so that
each agent performs multiple local updates and then
periodically communicate with its neighbors. Fur-
thermore, we propose DLMSA with compressed
communication (C-DLMSA) for further reducing
the communication overhead. In this way, each
agent only needs to communicate compressed infor-
mation (e.g., sign compression) with its neighbors.
We show that C-DLMSA enjoys the same conver-
gence rate as that of the original DLMSA. Finally,
we verify our theoretical results by applying our
methods to solve multi-task reinforcement learning
problems over multi-agent systems.

1 Introduction
Stochastic approximation (SA) is a class of iterative ap-
proaches for solving fixed-point equations in the presence
of noise. Since its introduction in [Robbins and Monro, 1951],
this type of method has received great interests due to its broad
applications in many areas including stochastic optimization
[Bottou et al., 2018] and reinforcement learning [Sutton and
Barto, 2018]. In stochastic optimization, the stochastic gra-
dient descent (SGD) algorithm is regarded as a SA method
to find an optimal solution of a target objective function. In
reinforcement learning (RL), Q-learning and TD-learning are
popular SA algorithms used to solve the Bellman equations
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[Bhandari et al., 2018; Srikant and Ying, 2019]. In RL, the
SA algorithms naturally involve Markovian noise. Markovian
SA, which is characterized by sampling data from Markov
processes, has also found applications in many other fields,
such as robust optimization [Duchi et al., 2012] and stochas-
tic optimization over ergodic data [Dorfman and Levy, 2022;
Alacaoglu and Lyu, 2023], where many existing algorithms
can be viewed as different variants of Markovian SA.

Distributed SA has emerged as a powerful class of algo-
rithms, when training data are collected and stored at multiple
agents. This distributed training paradigm primarily arises in
many real-world applications, including multi-agent reinforce-
ment learning [Zeng et al., 2021b; Sun et al., 2020], decentral-
ized decision making [Lakshmanan and De Farias, 2008], dis-
tributed and parallel computing [Kushner and Yin, 1987; Jiang
and Xu, 2008], etc. Although distributed training paradigm
has been actively applied in various fields [Dean et al., 2012;
Mnih et al., 2016], Markovian SA has not been well-studied
in decentralized settings. As its name suggests, “decentral-
ized” implies a more challenging setting where all agents must
rely on communications to reach a consensus without any
coordination from a central server.

In this paper, we consider the Markovian SA problem on
multi-agent systems:

1

n

n∑
i=1

Eξi∼µi
[Hi(x, ξi)] = x, (1)

where ∀i ∈ {1, 2, · · · , n}, Hi(x, ξi) : Rd × Y → Rd is a
general nonlinear operator, ξi ∈ Y is a random variable, and
Hi(x) = Eξi∼µi

[Hi(x, ξi)] is the expectation operator. We
are interested in the case that ξi is sampled from a Markov
process, whose stationary distribution is µi. In multi-agent sys-
tems, agents can interact with each other through an undirected
connected network G = (V, E), where V = {1, 2, · · · , n} is
the collection of agents and E is the set of communication
links (i, j), i, j ∈ V that connect agents.

Existing approaches to solving problem (1) typically use
a specific “client/server” model for agent interaction where
a central server is responsible for updating the global model.
Specifically, [Doan, 2020] proposed a local SA algorithm and
derived a convergence rate Õ(K/T ), where K is the commu-
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Algorithm Architecture Local Markovian Compressed RateUpdates Noise Communication

SA [Chen et al., 2020] Single % % % O(1/T )

Markovian SA [Chen et al., 2021] Single % " % Õ(1/T )

Local SA [Doan, 2020] Cen. " " % Õ(K/T )

Federated SA [Khodadadian et al., 2022] Cen. " " % Õ(1/T )

Markovian SA [Wai, 2020] Dec. % " % Õ(δ−1/T 1/2)

DCSA [Zeng et al., 2022] Dec. % " % Õ(δ−2/T )

DLMSA (this paper) Dec. " " % Õ(1/T )

C-DLMSA (this paper) Dec. " " " Õ(1/T )

Table 1: Convergence rates of different stochastic approximation algorithms for nonlinear stochastic approximation problems. Possible
distributed architectures include 1) Single, the single-agent case, 2) Cen., a central server coordinating multiple agents; and 3) Dec., each
agent directly communicating with its neighbors, without the need for a central server. δ is the spectral gap of the communication network
(0 < δ ≤ 1). K is the communication interval (K ≥ 1). T is the total number of iterations (T ≥ 1).

nication interval. It is worth noting that the convergence rate
depends on the communication frequency. [Khodadadian et
al., 2022] proposed a federated SA, and proved that the method
achieves a convergence rate of Õ(1/T ); however, the conver-
gence rate is derived only for ||xout||2c rather than ||xout−x∗||2c ,
where xout is the output of the algorithm and x∗ is the opti-
mal solution of the SA problem. Compared to [Doan, 2020;
Khodadadian et al., 2022] that restrict their focus on the cen-
tralized distributed learning framework, [Wai, 2020] consid-
ered Markovian SA in decentralized settings, and showed that
the convergence rate of the proposed method is Õ(δ−1/T 1/2).
[Zeng et al., 2022] proposed a new decentralized SA algorithm
DCSA that achieves an Õ(δ−2/T ) convergence rate. We see
that the existing convergence rates of decentralized SA depend
on the spectral gap δ of the communication network. Conver-
gence rates of existing decentralized SA algorithms are worse
than the near-optimal O(1/T ) and Õ(1/T ) convergence rates
achieved by SA [Chen et al., 2020] and Markovian SA [Chen
et al., 2021], respectively.

On the other hand, communication overhead is one of the
main bottlenecks in distributed learning framework, which mo-
tivates the use of advanced algorithmic strategies to alleviate
the communication overhead [Liu et al., 2022]. In particular,
[Doan, 2020; Khodadadian et al., 2022] increase the num-
ber of local updates between the communication rounds to
improve the computation-to-communication ratio. Another
strategy is to leveraging compressed communication in which
each agent sends the compressed information to its neighbors.
These two strategies exhibit superior performance in scenarios
where each agent has limited communication capabilities. But
as far as we are aware, none of the existing work solves the
Markovian SA problem by using multiple local updates or
compressed communication in decentralized settings. Then,
there exists a natural question:

Can we design communication-efficient decentralized
Markovian stochastic approximation algorithms with near-
optimal Õ(1/T ) convergence guarantees?

1.1 Contributions
In this paper, we give an affirmative answer to the above
question by deriving convergence rates for DLMSA and C-
DLMSA under mild assumptions. The main contributions are
briefly described as follows.

Two New Algorithms
We first propose a decentralized local Markovian stochastic ap-
proximation algorithm (DLMSA) algorithm. In DLMSA, each
agent independently performs multiple local updates corrupted
by Markovian noise and periodically communicates with its
neighbors over a sparse communication network. DLMSA
achieves temporal-spatial communication reduction by simul-
taneously allowing multiple local updates (i.e., reducing com-
munication frequency) and allowing decentralized communi-
cation via a sparse network topology. To further reduce the
communication overhead, we further propose DLMSA with
compressed communication (C-DLMSA), which covers both
unbiased and biased compression operators (e.g., quantization
or sparsification).

Convergence Guarantees
We derive finite-time convergence rates of DLMSA involving
a contraction mapping with respect to an arbitrary norm rather
than the Euclidean norm. We show that despite Markovian
noise, multiple local updates, and network connectivity affect-
ing the higher-order terms, the dominated term Õ(T−1)1 in
the convergence rate is the same as the centralized baseline
with exact communication under i.i.d. samples, differing only
by logarithmic factors. Furthermore, we demonstrate that C-
DLMSA converges at a same rate to DLMSA, suggesting that
C-DLMSA gains communication efficiency through compres-
sion, essentially for free. Our results and comparisons with
existing work are summarized in Table ??. The C-DLMSA
algorithm significantly outperforms existing work. Our algo-
rithms converge at a near-optimal rate while allowing multiple
local updates, Markovian noise, and arbitrary communication
compression in decentralized settings.

1The Õ(·) notation hides all log-terms and universal constants.
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Technical Challenges in Analysis
Our analysis faces multiple challenges and requires several
new insights. First, a key non-trivial technical ingredient
is to identify error bounds for decentralized communication
and Markovian noise-corrupted multiple local updates, and
to make them compatible with proofs of the SA algorithm.
For C-DLMSA, its analysis is more delicate and challenging
because the compression operator may be biased. Second, our
analysis is derived in the case where the norm of the contrac-
tion mapping of SA is arbitrary (e.g., ℓ∞-norm) instead of just
being the Euclidean norm || · ||2. To this end, we introduce a
potential function obtained by smoothing the norm-squared
function with a generalized Moreau envelope. Third, the con-
traction mapping of SA or the noise is bounded by a constant
in prior literature; instead, we only assume that the contraction
mapping is bounded at the 0-point (see Assumption 1), and
the second-order moment of the noise scales affinely with the
current iterate (see Assumption 3).

Application to Multi-Task Reinforcement Learning
We apply our theoretical results to multi-task reinforcement
learning over multi-agent systems. In particular, we present
for the first time decentralized federated variants of the Q-
learning algorithm and establish its finite-time convergence
rates. Performing multiple local updates on agents before
exchanging information via sparse communication network
is adopted in our algorithms to improve communication effi-
ciency. We prove that when the solution accuracy ϵ is small
enough, the sample complexity and communication complex-
ity of our algorithms are Õ(1/ϵ) and Õ(1/

√
ϵ), respectively.

Experiments on standard multi-task reinforcement learning
tasks are provided to illustrate our theoretical results.

1.2 Related Work

Stochastic Approximation with Markovian Noise
Markovian SA relates closely to Markov gradient descent
[Benveniste et al., 2012; Doan, 2022] in optimization litera-
ture; however, Markovian SA is a more general framework
that covers many problems in reinforcement learning that can-
not be formulated as optimization problems, e.g., Q-learning
[Watkins and Dayan, 1992]. Existing works on Markovian SA
mainly focus on the single-agent case. The asymptotic conver-
gence of Markovian SA was established by using the ordinary
differential equation (ODE) method [Bertsekas and Tsitsik-
lis, 1996; Borkar, 2009; Borkar et al., 2021]. The finite-time
convergence rates of Markovian SA were studied in [Chen
et al., 2021; Chen et al., 2022]. They proved that Marko-
vian SA achieves an Õ(1/T ) convergence rate. [Doan, 2020;
Khodadadian et al., 2022] proposed distributed local Marko-
vian SA, and derived Õ(K/T ) and Õ(1/T ) convergence rates,
respectively. [Wai, 2020; Zeng et al., 2022] considered dis-
tributed Markovian SA in decentralized settings, but the con-
vergence rates of the proposed methods are dependent on the
communication network topology. In sharp contrast, our meth-
ods achieve a network topology-independent convergence rate,
when the total number of iterations is sufficiently large.

Federated Learning with I.I.D. Noise
Federated learning is a distributed learning paradigm that uti-
lizes local computation of agents to train models without sac-
rificing data privacy; see the recent survey paper [Li et al.,
2020b]. In federated learning, the core algorithm FedAvg,
also known as “local SGD”, is featured by performing more
local updates at each local agent and periodical communication
via the central server [McMahan et al., 2017]. The conver-
gence analysis of FedAvg is discussed by [Khaled et al., 2019;
Li et al., 2019]. The authors in [Sun et al., 2022] studied
the decentralized FedAvg, which is implemented on agents
that are connected by an undirected communication network.
When agents do not trust a central server to protect their pri-
vacy, decentralized federated learning is the learning paradigm
of choice [Yang et al., 2019]. Except for [Doan, 2020;
Khodadadian et al., 2022] mentioned above, we note that
existing federated learning work mainly focuses on the case
of sampling data from independent and identically distributed
unknown distributions.

Distributed and Multi-Agent RL
Distributed Markovian SA theory has important applications
in distributed and multi-agent RL. For example, the non-
asymptotic analysis of distributed Q-learning can be seen as a
Markovian SA problem [Xu and Gu, 2020]. Recently, there
is a large literature on distributed and multi-agent RL. In par-
ticular, [Heredia et al., 2020] provided a finite-time analysis
of distributed Q-learning in multi-agent systems. [Li et al.,
2020a] derived non-asymptotic sample complexity bounds
of asynchronous Q-learning. [Wang et al., 2020] provided a
non-asymptotic analysis of decentralized TD methods with
gradient tracking and linear function approximation. [Zhang
et al., 2021] focused on decentralized multi-agent RL pol-
icy evaluation with nonlinear function approximation. [Sayin
et al., 2021] presented a provably convergent decentralized
multi-agent RL learning dynamics for zero-sum discounted
Markov games over an infinite horizon. [Chen et al., 2018]
proposed a policy gradient method termed lazily aggregated
policy gradient to improve communication efficiency via in-
frequent communication. To our knowledge, all these works
do not consider both Markovian noise-corrupted multiple lo-
cal updates and compressed decentralized communication. In
this paper, the proposed C-DLMSA subsumes compressed
decentralized federated Q-learning as a special case.

2 Preliminaries
2.1 Single-Agent Case
The SA algorithm is an iterative procedure for finding fixed
points of a function when only noisy estimates of the function
are observed. Specifically, with contraction mapping H : Rd×
Y → Rd and ξ ∈ Y being random variable with distribution
µ, Markovian SA seeks to solve the equation

Eξ∼µ[H(x, ξ)] = x, (2)
by the following update

xk+1 = xk + α (H(xk, ξk)− xk + ωk) ,

for k = 0, 1, · · · , T − 1, (3)
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where ξk is a random variable derived from the evolution of
a Markov chain, ωk is additive noise, α is step size, and T
denotes the number of iterations. Indeed, Q-learning can be
viewed as a variant of Markovian SA [Tsitsiklis, 1994]. In
[Chen et al., 2020], the authors showed that with an appro-
priate constant step size α, Markovian SA has the following
convergent behavior

E[||xT − x∗||2] ≤ C1(1− C0α)
T + C2α, (4)

where C0, C1 and C2 are some problem dependent positive
constants and x∗ is a solution of Eq.(2). In Eq.(4), we can re-
duce the finite-time convergence rate by reducing the step size
α. We see that the finite-time convergence rate is dominated
by the second term C2α, if α is small enough.

2.2 Some Mild Assumptions
Throughout this work, denote || · ||c as an arbitrary norm in Rd.
We analyze our algorithms under the following assumptions.

Assumption 1. There exist ρ ∈ (0, 1) and two positive con-
stants A1 and B1 such that for any agent i ∈ {1, 2, · · · , n},
(1) ||Hi(x1)−Hi(x2)||c ≤ ρ||x1 − x2||c, ∀x1,x2 ∈ Rd;
(2) ||Hi(x1, ξi)−Hi(x2, ξi)||c ≤ A1||x1 −x2||c, ∀x1,x2 ∈
Rd, ξi ∈ Y;
(3) ||Hi(0, ξi)||c ≤ B1, ∀ξi ∈ Y .

The first property above implies that Hi(x) is a contraction
mapping with respect to an arbitrary norm || · ||c. By applying
Banach fixed-point theorem [Debnath and Mikusinski, 2005],
the first property guarantees that Eq.(1) has a unique solution,
which we have denoted by x∗. The second property implies
that Hi(x, ξi) is smooth with respect to the input argument
x. The last property is weaker than the general boundedness
assumption considered in the existing literature; e.g., [Kho-
dadadian et al., 2022; Gao et al., 2022].

Assumption 2. The weighted connectivity matrix M =
[Mij ] ∈ Rn×n satisfies the following:
(1) Doubly Stochastic:

∑n
i=1 Mij =

∑n
j=1 Mij = 1;

(2) Symmetric: Mij = Mji, ∀i, j ∈ {1, 2, · · · , n};
(3) Network Sparsity: Mij > 0 if (i, j) ∈ E; otherwise
Mij = 0, ∀i, j ∈ {1, 2, · · · , n}.

Assumption 2 is fairly standard in the analysis of decentral-
ized optimization; see e.g., [Xin et al., 2020]. In Assumption
2, M = [Mij ] ∈ Rn×n denotes the weighted connectiv-
ity matrix of G. The ordered eigenvalues of M are denoted
by 1 = |λ1(M)| > |λ2(M)| ≥ · · · ≥ |λn(M)|. We term
δ = 1 − |λ2(M)| as the spectral gap of M. For such a sym-
metric and doubly stochastic, δ ∈ (0, 1] characterizes the
connectivity of the network [Nedić et al., 2018].

3 Decentralized Local Markovian Stochastic
Approximation

In the section, we propose decentralized local Markovian
stochastic approximation (DLMSA) algorithm and its com-
pressed variant (C-DLMSA) to solve Eq.(1).

Agent 1
Agent 2

Agent 3 Agent 4

𝑲	local updates

x!,#
x!,$

x!%&,'

x!%&,'

Figure 1: Schematic representation of DLMSA where agents perform
K local updates and reach consensus through information exchange
over a sparse communication network.

Algorithm 1 DLMSA

1: Initialization: α > 0, K ∈ Z+, x0,i = x0 for all agent
i ∈ {1, 2, · · · , n}

2: for k = 0, 1, · · · , T − 1 do
3: for agent i ∈ {1, 2, · · · , n} do
4: xk+1,i = xk,i + α

(
Hi(xk,i, ξk,i)− xk,i + ωk,i

)
5: if mod (k + 1,K) = 0 then
6: xk+1,i =

∑
j∈Ni

Mijxk+1,j

7: end if
8: end for
9: end for

3.1 DLMSA
The key idea of our proposed DLMSA is to perform multiple
iterative updates locally on each agent, followed by decen-
tralized communication over a sparse network topology (see
Figure 1). The details of DLMSA are shown in Algorithm
1. Specifically, at each iteration k each agent i maintains a
local optimization variable xk,i and updates this variable as
xk+1,i = xk,i+α

(
Hi(xk,i, ξk,i)− xk,i + ωk,i

)
, where ξk,i

is a variable which is Markovian along the time k, ωk,i is
additive noise, and α is step size.

To ensure convergence, at every K iterations, the exchange
of information (through a consensus operation) occurs be-
tween connected agents (neighbors). Denote Ni = {j ∈
V|(i, j) ∈ E} ∪ {i}. If mod (k + 1,K) = 0, then
xk+1,i =

∑
j∈Ni

Mijxk+1,j . In a practical implementation,
each agent only sends its local optimization variable xk+1,i

to its neighbors Ni. Here, the communication period K is
greater than 1, so that the number of communication rounds is
reduced to T/K.

3.2 C-DLMSA
To further reduce the communication overhead, we propose C-
DLMSA (see Algorithm 2). The main pillar in C-DLMSA is
an error-compensated mechanism for mitigating compression
errors. Specifically, at each iteration k each agent i maintains
local variables (xk,i, {x̂k,j}j∈Ni

,yk,i), and updates the vari-
able y as yk+1,i = xk,i + α

(
Hi(xk,i, ξk,i)− xk,i + ωk,i

)
.
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Algorithm 2 C-DLMSA

1: Initialization: α > 0, η > 0, K ∈ Z+, x0,i = x0,
x̂0,i = 0 for all agent i ∈ {1, 2, · · · , n}

2: for k = 0, 1, · · · , T − 1 do
3: for agent i ∈ {1, 2, · · · , n} do
4: yk+1,i = xk,i + α

(
Hi(xk,i, ξk,i)− xk,i + ωk,i

)
5: if mod (k + 1,K) = 0 then
6: qk,i = Q[yk+1,i − x̂k,i]
7: x̂k+1,i = x̂k,i + qk,i

8: xk+1,i = yk+1,i + η
∑

j∈Ni
Mij(x̂k+1,j −

x̂k+1,i)
9: else

10: x̂k+1,i = x̂k,i

11: xk+1,i = yk+1,i

12: end if
13: end for
14: end for

If mod (k + 1,K) = 0, each agent i sends qk,i =
Q[yk+1,i − x̂k,i] to its neighbors, where Q is the com-
pressed operator. Upon receiving qk,j from its neighbors,
the agent i updates x̂k+1,j = x̂k,j + qk,j and xk+1,i =
yk+1,i + η

∑
j∈Ni

Mij(x̂k+1,j − x̂k+1,i).
If mod (k + 1,K) ̸= 0, then x̂k+1,i = x̂k,i, xk+1,i =

yk+1,i, and no information exchange occurs.

4 Main Results
Define Fk as the Sigma-algebra generated by
{(xk′,i, ξk′,i,ωk′,i)}0≤k′≤k−1, i∈{1,2,··· ,n} ∪ {xk,i}. We
make the following assumption on the noises {ωk,i}.
Assumption 3. For any agent i ∈ {1, 2, · · · , n}, the random
process {ωk,i} satisfies the following:
(1) E [ωk,i|Fk] = 0 for all k ≥ 0;
(2) ||ωk,i||c ≤ A2||xk,i||c +B2 for all k ≥ 0, where A2 and
B2 are positive constants.

Here, we do not assume that ωk,i are independent among
agents i ∈ {1, 2, · · · , n}, which is often assumed when study-
ing the finite-time convergence rates of distributed SA; see for
example [Khodadadian et al., 2022].

In this work, we consider the case where the random vari-
able {ξk,i} for each agent i is generated by a Markov process.
This Markovian sampling results in correlated and biased data
[Kumar et al., 2023]. To this end, we impose the following
assumption on the Markov chain {ξk,i}.

Assumption 4. For any agent i ∈ {1, 2, · · · , n}, the Markov
chain {ξk,i} has a unique stationary distribution µi ∈ ∆|Y|,
and there exist constants ζ > 0 and σ ∈ (0, 1) such that
maxξi∈Y ||P k(ξi, ·)− µi(·)||TV ≤ ζσk for all k ≥ 0, where
∆|Y| is the probability simplex on R|Y|, and || · ||TV stands for
the total variation distance [Levin and Peres, 2017].

We denote by τα = min{k ≥ 0 : maxξi∈Y ||P k(ξi, ·) −
µi(·)||TV ≤ α, ∀i ∈ {1, 2, · · · , n}}. The mixing time τα
represents the time it takes for the distribution {ξk,i} to get
close to the stationary distribution µi. Assumption 4 implies
that τα ≤ (log(1/α) + log(ζ/σ)) / log(1/σ), and it follows

that limα→0 ατ
2
α = 0. When the Markov chain {ξk,i} is

irreducible and aperiodic, Assumption 4 holds [Levin and
Peres, 2017].

4.1 Finite-Time Convergence Rate of DLMSA
We provide a finite-time convergence rate for Algorithm 1 in
the following theorem.

Theorem 1. Consider the updates of Algorithm 1. Sup-
pose that Assumptions 1, 2, 3, and 4 are satisfied, and

α ≤ min
{

1
4Aτα

, δ
4

1√
AK

, ϕ
8

1
𭟋A2κντ2

α
, 1
32

√
ϕδ2

𭟋A2κK2(τα+1)ν

}
for some positive constants 𭟋, A, κ, ϕ, and ν, which are spec-
ified precisely in Appendix A, and are independent of α, δ, τα,
n, T , and K. For any T > 2τα, we have

||xout − x∗||2c

≤ O

(
1

α

(
1− 1

4
ϕα

)T−2τα+1

+ ατ2α +
α2K2

δ2

)
, (5)

where xout = 1
WT

∑T
k=2τα

wk

n

∑n
i=1 xk,i for weights wk =(

1− 1
4ϕα

)−k
, WT =

∑T
k=2τα

wk, and 0 < ϕ < 1.

Remark 1 (Finite-time convergence analysis): Theorem
1 provides the first finite-time analysis of decentralized fed-
erated stochastic approximation under Markovian sampling.
Specifically, with respect to an arbitrary norm || · ||c, Theo-
rem 1 establishes the convergence of xout to a ball around the
optimal solution x∗ with a radius on the order of α log2( 1

α ).
The first term in Eq.(5) converges geometrically to zero as
T grows, and the convergence rate in Eq.(5) is dominated by
the second term, being proportional to α log2( 1

α ) for small
enough α. In Theorem 1, the network topology and multiple
local updates mildly affect the convergence rate, with δ and K
only affecting the highest-order term of α in Eq.(5). Selecting
the step size α = O(log T/T ) for sufficiently large T , we
see that xout converges exactly to the optimal solution with
convergence rate Õ(1/T ). When Hi(x, ξi) is the gradient of
some function, we recover the convergence rate of the decen-
tralized federated averaging algorithm in [Sun et al., 2022]
for solving strongly convex objective functions under i.i.d.
samples, up to logarithmic factors.

Remark 2 (Convergence dependence on δ and K): The
highest-order term of α in Eq.(5) depends quadratically on
the inverse of the spectral gap δ, which shows the impact of
the communication network on the convergence of the algo-
rithm. We see that a smaller δ implies that the communication
network is sparse and the convergence rate slows down. The
highest-order term of α in Eq.(5) depends quadratically on the
communication interval K. We see that a larger K indicates
less communication between agents, so the highest-order term
of α in Eq.(5) becomes larger.

Remark 3 (Comparison with the rate of decentralized
stochastic approximation): In Theorem 1, the network
topology δ only affects the highest-order term of α in Eq.(5).
However, the dominated order of bounds in [Zeng et al., 2022]
is affected by the network topology. Furthermore, the order of
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convergence rate in Theorem 1 is independent of the number
of agents, i.e., n, which is in contrast to the convergence rate
in [Zeng et al., 2022] that gets worse as n increases.
Remark 4 (Comparison with the rate of federated stochas-
tic approximation): In Theorem 1, we prove that the output
xout of DLMSA using a decreasing step size converges to the
optimal solution x∗ of the SA problem; however, [Khodada-
dian et al., 2022] only proves that ||xout||2c converges to 0.
Furthermore, the consensus errors induced by the decentral-
ized network structure in this paper make the analysis more
challenging compared to the centralized SA algorithm pro-
posed in [Khodadadian et al., 2022].

4.2 Finite-Time Convergence Rate of C-DLMSA
To analyze the convergence rate of C-DLMSA, we impose the
following assumption on the compressed operator Q.
Assumption 5. The compressed operator Q : Rd → Rd

satisfies EQ[||Q[x] − x||2c ] ≤ (1 − ω)||x||2c for a parameter
0 < ω ≤ 1 and ∀x ∈ Rd. Here EQ[·] denotes the expectation
on the internal randomness of the compressed operator Q.

We provide a finite-time convergence rate for Algorithm 2
in the following theorem.
Theorem 2. Consider the updates of Algorithm 2. Sup-
pose that Assumptions 1, 2, 3, 4, and 5 are satisfied,
η = δω3

64β2+12β2ω2+2δ2ω2 with β = maxi{1 − λi(M)},

and α ≤ min
{

1
4Aτα

, δ
4

1√
AK

, ϕ
8

1
𭟋A2κντ2

α
, 1
8

√
ηδ

AK2C(η,δ,β,ω) ,

1
64

√
ϕηδ

𭟋A2κK2(τα+1)νC(η,δ,β,ω)

}
for some positive constants

𭟋, A, κ, ϕ, and ν, which are specified precisely in Appendix
B, and are independent of α, δ, τα, n, T , and K, where
C(η, δ, β, ω) is a constant defined in Appendix B, being depen-
dent on η, δ, β, and ω. For any T > 2τα, we have

||xout − x∗||2c

≤ O

(
1

α

(
1− 1

4
ϕα

)T−2τα+1

+ ατ2α +
α2K2

δ4ω6

)
, (6)

where xout = 1
WT

∑T
k=2τα

wk

n

∑n
i=1 xk,i for weights wk =(

1− 1
4ϕα

)−k
, WT =

∑T
k=2τα

wk, and 0 < ϕ < 1.
Remark 5 (Finite-time convergence analysis): Theorem
2 provides a finite-time analysis of C-DLMSA under Marko-
vian sampling. Similarly, the first term in Eq.(6) converges
geometrically to zero as T grows, and the convergence rate in
Eq.(6) is dominated by the second term, being proportional to
α log2( 1

α ) for small enough α. The network topology, mul-
tiple local updates, and compressed communication mildly
affect the convergence rate, with δ, K, and ω only affecting
the highest-order term of α in Eq.(6).
Remark 6 (Convergence dependence on ω): The highest-
order term of α in Eq.(6) depends on the inverse of the com-
pression parameter ω, which shows the impact of compressed
communication on the convergence of the algorithm. We see
that a smaller ω close to 0 means that the compressing com-
munication loses more information, so the highest-order term
of α in Eq.(6) becomes larger.

5 Application to Multi-Task Reinforcement
Learning

In decentralized federated Q-learning, agents collaboratively
estimate the optimal Q-function. Specifically, for each k ≥ 0,
each agent i maintains a local Q-function estimate Qk,i(s, a).
Here, we also consider an MDP consisting of a finite set
of states S and a finite set of actions A. Given trajectories
{(Sk,i, Ak,i, Rk,i, Sk+1,i)} collected using a suitable behav-
ior policy πb, the iterate Qk,i(s, a) is updated as

Qk+1,i(Sk,i, Ak,i) = Qk,i(Sk,i, Ak,i)

+ αΓ[Qk,i, Sk,i, Ak,i, Rk,i, Sk+1,i];

Qk+1,i(s, a) = Qk,i(s, a), otherwise, (7)

where we denote by Γ[Qk,i, Sk,i, Ak,i, Rk,i, Sk+1,i] = Rk,i+
γmaxa′ Qk,i(Sk+1,i, a

′) − Qk,i(Sk,i, Ak,i). If mod (k +
1,K) = 0, then Qk+1,i =

∑
j∈Ni

Mi,jQk+1,j . Similarly, we
can use the communication compression in Algorithm 2 to get
compressed decentralized federated Q-learning. Specifically,
the update (7) in decentralized federated Q-learning can be
rewritten as

Qk+1,i = Qk,i + α(Hi(Qk,i, ξk,i)−Qk,i + ωk,i), (8)

which is in the same form of C-DLMSA by defining ξk,i =
(Sk,i, Ak,i, Rk,i, Sk+1,i), ωk,i = 0, and the nonlinear opera-
tor Hi(Qk,i, ξk,i) : R|S||A| × Y → R|S||A|:

Hi(Qk,i, ξk,i)(s, a) = 1{(s,a)=(Sk,i,Ak,i)}

× Γ[Qk,i, s, a, Rk,i, Sk+1,i] +Qk,i(s, a), ∀(s, a). (9)

The properties of the operator Hi(Qk,i, ξk,i) and the Markov
chain {ξk,i} are established in the following proposition,
which guarantee that Assumptions 1, 3, and 4 are satisfied.

Proposition 1. Assume the behavior policy πb satisfies
πb(a|s) > 0 for all (s, a), and the Markov chains {Sk,i} in-
duced by πb are irreducible and aperiodic, then Assumptions
1, 3, and 4 are satisfied with respect to the || · ||∞ norm.

Corollary 1. Consider Qout generated by (compressed) de-
centralized federated Q-learning. Assume πb satisfies the con-
ditions in Proposition 1. In order to make ||Qout−Q∗||2∞ ≤ ϵ,
where ϵ > 0 is a given accuracy and Q∗ is the Q-function asso-
ciated with an optimal policy, the sample and communication
complexities are Õ(1/ϵ) and Õ(1/

√
ϵ), respectively.

5.1 Experiments
In this section, we aim to support our theoretical results by
applying (compressed) decentralized federated Q-learning to
solve the multi-task GridWorld problem [Zeng et al., 2021a].

We consider the GridWorld problem with n individual en-
vironments of size 10 × 10 over n different agents. We
assign each agent to an environment where the agent is
placed in a grid of cells, each cell having one of three labels
{goal, obstacle, empty}. The agent chooses one action of 4
actions {up, down, left, right} to move to the next cell. The
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Figure 2: 4Agents@2Obstacles: Left: evaluation of learned policy.
Right: average return for different algorithms. The Dark green cell
represents the starting position of the agents. Red cells represent
obstacles. Yellow cells represent goals and white numbers represent
the indices of agents.
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Figure 3: 5Agents@5Obstacles: Left: evaluation of learned policy.
Right: average return for different algorithms.

reward is −0.1× (distance between agent and goal) ±10, de-
pending on whether the goal is reached or the agent is trapped
in an obstacle. By training agents in different environments
to obtain a unified policy, it is expected to have better gener-
alization ability. We connect the agents in a ring graph and
use centralized Q-learning (Cen. Q-learning), decentralized
federated Q-learning (DFed. Q-learning), and compressed
decentralized federated Q-learning (Comp. DFed. Q-learning)
to train them for 1000 episodes. In centralized Q-learning,
consensus operations with exact information are performed
at each iteration. We use the same best-tuned learning rate
α = 0.5, communication interval K = 10, and discounter fac-
tor γ = 0.99 in all experiments. For Comp. DFed. Q-learning,
we use top1% [Stich, 2018] as the compression operator. Ex-
perimental results are the average over 10 random seeds.

Figure 2 considers experiments with 4 agents, while Figures
3 and 4 consider experiments with 5 and 6 agents, respectively.
After 1000 episodes of training with DFed. Q-learning, we ob-
serve that agents agree on a policy whose performance is tested
across all environments. We combine all the results into one
grid, as shown on the left side of Figures 2-4. The light green
path is the route that the agents visit in these environments. We
see that a unified policy finds all targets in all environments.
This verifies the effectiveness of DFed. Q-learning. On the
right side of Figures 2-4, we compare Fed. Q-learning and
Comp. DFed. Q-learning with Cen. Q-learning. We show the
results for the average return versus the number of iterations.
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Figure 4: 6Agents@5Obstacles: Left: evaluation of learned policy.
Right: average return for different algorithms. The number i in red
cell represents the obstacle of the i-th agent.

Figure 5: Left: different choices of the network topology. Right:
different choices of the communication interval.

We see that despite consensus errors, local update errors, and
compression errors, the Comp. DFed. Q-learning achieves
comparable performance to Cen. Q-learning. Figure 5 shows
different choices of network topology δ and communication
interval K. The results show that the effect of network topol-
ogy on the convergence rate of DFed. Q-learning is limited,
and we observe similar results for DFed. Q-learning when the
communication interval K increases from 1, 10 to 20.

6 Conclusion
In this paper, we proposed decentralized local Markovian
stochastic approximation DLMSA algorithm and its com-
pressed variant C-DLMSA. The C-DLMSA algorithm can
achieve temporal-spatial communication reduction by allow-
ing multiple local updates, decentralized communication
through sparse network topology, and arbitrary communica-
tion compression. We established finite-time convergence
rates for DLMSA and C-DLMSA, and showed that the algo-
rithms converge at a near-optimal rate Õ(1/T ). Finally, we
applied our algorithms to multi-task reinforcement learning.
Future directions of this work include studying DLMSA and
C-DLMSA under asynchronous communication as well as
time-varying and/or directed communication graphs.
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