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Abstract

Multimodal learning is provably superior to uni-
modal learning. However, in practice, the best-
performing unimodal networks often outperform
jointly trained multimodal networks. This phe-
nomenon can be attributed to the varying con-
vergence and generalization rates across different
modalities, leading to the dominance of one modal-
ity and causing underfitting of other modalities in
simple multimodal joint training. To mitigate this
issue, we propose two key ingredients: i) disentan-
gling the learning of unimodal features and mul-
timodal interaction through an intermediate rep-
resentation fusion block; ii) modulating the log-
its of different modalities via dynamic coefficients
during training to align their magnitudes with the
target values, referred to as online logit modula-
tion (OLM). Remarkably, OLM is model-agnostic
and can be seamlessly integrated with most exist-
ing multimodal training frameworks. Empirical ev-
idence shows that our approach brings significant
enhancements over baselines on a wide range of
multimodal tasks, covering video, audio, text, im-
age, and depth modalities.

1 Introduction
Intuitively, multimodal models that fuse different modality
data are expected to outperform unimodal models due to the
richer information they provide. However, a counterintu-
itive finding is often observed in practice, where the best-
performing unimodal networks outperform jointly trained
multimodal networks, especially in coarse-grained multi-
modal classification tasks [Wang et al., 2020; Peng et al.,
2022]. This phenomenon can be attributed to the fact that
different modalities learn representations at different rates of
convergence and generalization. Current mainstream mul-
timodal joint training frameworks, which incorporate late
fusion [Xu et al., 2023a] to encode different modalities’
features into a shared latent space and map them to the
task space, may lead to inconsistent final convergence states
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Figure 1: (A) Audiovisual and unimodal test accuracy on MER-
MULTI. (B) The batch-average unimodal logit scores. (C-D) The
averaged L2 norms of unimodal logit vectors.

among modalities, where some may be overfitted while oth-
ers remain underfitted. In such cases, the multimodal model
experiences degradation, relying excessively on a specific
modality and failing to effectively utilize information from
other modalities.

Existing research on balancing multimodal learning can
be categorized into two approaches: i) overcoming architec-
tural deficiencies and ii) harmonizing multimodal training
schemes. The former involves designing modality-specific
encoders to learn the unique features of each modality and
modality-invariant encoders to learn shared representations
across modalities [Hazarika et al., 2020], or bridging the
gap between modalities by employing modality-aware en-
coders [Xiao et al., 2020] (e.g., SlowFast [Feichtenhofer et
al., 2019], comprising a slow pathway operating at a low
frame rate to capture spatial semantics and a Fast pathway
operating at a high frame rate to capture fine temporal mo-
tion). The latter includes methods such as G-blend [Wang et
al., 2020], which computes an optimal blending of modalities
based on their overfitting behaviors; CUR [Wu et al., 2022],
which balances the conditional learning rates between modal-
ities using the condition utilization ratio to measure the per-
formance difference between unimodal and bimodal models;
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and OGM-GE [Peng et al., 2022], which achieves dynamic
and differentiated parameter updates through on-the-fly gra-
dient modulation. Despite the modest success of these meth-
ods, they either require additional complex gradient compu-
tations and modifications to standard backpropagation or in-
volve multiple training runs to estimate imbalanced proxies.

We postulate that joint multimodal training can only ben-
efit from multimodal interactions when sufficient learning of
unimodal features is ensured. To achieve this, we first decou-
ple the learning of unimodal features and cross-modal feature
interactions through an Intermediate Representation Fusion
Block (IRFB). Next, to coordinate the optimization processes
of different modalities, we propose Online Logit Modulation
(OLM). Our motivation arises from observations in Fig. 1 (a)
and (b), where the audio modality contributes significantly to
overall performance. This dominance of the audio modality
is evident from the average unimodal logit scores within each
batch, while the visual modality persistently remains under-
optimized throughout training. Further observations in Fig. 1
(c) and (d) demonstrate that the logit norms corresponding to
each category continuously increase during training, and the
logit norms of the audio and visual modalities gradually di-
verge as training proceeds. Guided by these observations, we
propose to use OLM to regulate the magnitudes of logit vectors
across diverse modalities. The core principle of OLM involves
the adaptive adjustment of logit norms for each modality dur-
ing training. This is achieved by applying adaptive logit coef-
ficients to the modality-wise logit vectors. The intention is to
align the magnitude of the logit vector with its predetermined
target. Consequently, this approach attenuates logit norms
of swiftly converging modalities while amplifying those of
modalities that converge at a slower pace. The cumulative ef-
fect engenders a more harmonized optimization process. To
sum up, the contributions of this work are as follows:

• We decouple the learning of unimodal features and mul-
timodal interactions via an intermediate representation
fusion block (IRFB), thereby enabling sufficient train-
ing of unimodal features.

• We introduce OLM, an online logit calibration strat-
egy that scales each modality logit vector during train-
ing, thus aligning their magnitudes with the target logit
norms. Notably, OLM is model-agnostic and harmonizes
seamlessly with most multimodal training architectures.

• Empirical findings substantiate that our approach sig-
nificantly enhances the performance of baseline models
across diverse multimodal tasks, including human action
recognition, scene categorization, audiovisual event lo-
calization, and multimodal sentiment analysis.

2 Related Work
Multimodal Alignment and Fusion Features from distinct
modalities typically inhabit separate embedding spaces [Li
et al., 2021; 2022]. The primary goal of multimodal align-
ment is to project these diverse modalities onto a shared rep-
resentation space, thereby facilitating the modeling of sub-
sequent cross-modal fusion/interaction. Contrastive learn-
ing [Chen et al., 2020b] has extensively been employed

to train transformer-based multimodal models for achieving
modality alignment [Jia et al., 2021; Radford et al., 2021;
Yang et al., 2021; Li et al., 2022; Shen et al., 2023]. More-
over, beyond contrastive learning, the moment-based maxi-
mum mean discrepancy [Gretton et al., 2012], and the opti-
mal transport dataset distance [Alvarez-Melis and Fusi, 2020]
have also been explored for cross-modal distributional align-
ment. Multimodal interaction can occur at three levels: input
(a.k.a, early fusion), intermediate representation (a.k.a, mid-
dle fusion), and prediction or decision level (a.k.a, late fu-
sion) [Xu et al., 2023a]. Early fusion immediately combines
features right after their extraction, often achieved through
concatenation or summation of diverse representations. In
contrast, in a late fusion setting, all modalities are trained in-
dependently and merged right before the model makes a deci-
sion. Middle fusion, which typically employs cross-modal at-
tention or co-attention [Lu et al., 2019] and its variants, such
as ‘attention bottleneck’ [Nagrani et al., 2021], enable more
fine-grained modal interactions and yield more robust multi-
modal contextual representations.

Imbalanced Multimodal Learning Simple multimodal
joint training can lead to the optimization of only one dom-
inant modality, while other modalities suffer from underfit-
ting [Wang et al., 2020; Peng et al., 2022; Huang et al., 2022;
Wu et al., 2022; Fan et al., 2023]. In such cases, the
multimodal model excessively relies on a single modality,
compromising its generalization performance. To mitigate
such imbalanced optimization, a series of multimodal cali-
bration training algorithms have been proposed. For instance,
Wang et al. present G-Blend, which utilizes five-fold cross-
validation to estimate the overfitting-to-generalization ratio
and re-weights the training losses accordingly. Despite its
effectiveness, this approach requires additional data splitting
and training of individual unimodal models, resulting in an
increased computational burden. Peng et al. propose on-
the-fly gradient modulation (OGM-GE), which adaptively
controls the optimization for each modality by monitoring
their contributions to the learning objective. Moreover, it
incorporates additional Gaussian noise to mitigate potential
generalization degradation resulting from gradient modula-
tion. Nevertheless, this method requires sampling from the
distribution of gradient variances, hindering its training effi-
ciency. Wu et al. introduce the concept of the conditional
utilization rate (CUR), which is defined as the accuracy gain
when merging one modality with another into a model and
is applied to update one of the unimodal branches intention-
ally. However, it complicates the training protocol due to
its iterative loops between standard training steps and rebal-
ancing steps. PMR [Fan et al., 2023] leverages the proto-
types, namely the centroids of each modal in representation
space, to adjust the learning direction of each modal towards
its prototypes. Different from these methods, OLM acceler-
ates the slow-learning modality and alleviates the suppres-
sion from the dominant modality by adaptively modulating
the logit magnitude (while maintaining the learning directions
unchanged) of each modality during the entire training stage.
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Figure 2: Take visual and audio modalities as an example. OLM learns model-agnostic dynamic logit coefficients, accommodating both late
fusion and mid fusion paradigms. The left panel illustrates the generic paradigm of late fusion. Following the regulation of logit coefficients,
the directions of the logit vectors for each modality remain unchanged, while the magnitudes of these vectors are harmonized to achieve
better balance. The right panel demonstrates an exemplar of mid fusion. To decouple unimodal feature learning and cross-modal interaction
learning for multimodal sequence inputs, we introduce an intermediate representation fusion block (see § 3.1 for architectural details.)

3 Method
Problem Definition and Notation
Empirically, we consider two modalities e.g., visual and au-
dio modality, as an exemplar to illustrate our core idea. Given
a labeled dataset D = {xi, yi}Ni=1, where yi ∈ {1, 2, . . . , C}
represents the category associated with xi. C is the number of
classes and N is the number of samples. For each sample xi,
we extract visual feature sequence z[0]v ∈RTv×dv and acoustic
feature sequence z

[0]
a ∈RTa×da , where {Tm}m∈{v,a} is the

sequence length and {dm}m∈{v,a} is the feature dimension
of each modality. Let zm denote the sequence of token rep-
resentations generated by the multimodal interactions. Tf(·)
indicates the processing of Transformer layers (blocks). Our
goal is to learn a robust model that can efficiently integrate all
channels of multimodal information to predict y.

3.1 Multimodal Fusion Framework
Fig. 2 illustrates two distinct multimodal fusion frameworks,
namely, late fusion and mid fusion. Subsequently, we provide
an in-depth exposition of the proposed Intermediate Repre-
sentation Fusion Block (IRFB).

Unimodal Encoder
Analogous to [Devlin et al., 2018; Dosovitskiy et al., 2020],
we first append an additional learnable [CLS] token to
each modality input, and then employ the standard Trans-
former [Vaswani et al., 2017] as a unimodal encoder to obtain
token embeddings for each modality at each layer:

z[ℓ+1]
v = Tf1(z

[ℓ]
v ),

z[ℓ+1]
a = Tf2(z

[ℓ]
a ),

(1)

where ℓ indexes the layer number of the transformer models.
Since the appended [CLS] token aggregates the information
from all tokens, we use its embedding as the utterance-level
representation for each modality.

Intermediate Representation Fusion Block
To effectively model the interactions among the utterance-
level intermediate representations, we introduce IRFB (see
Fig. 3). This block not only facilitates capturing interactions
among the multimodal intermediate representations within
the same layer but also enables capturing interactions among
different layers. It is worth noting that directly fusing mul-
tiple modalities in a one-to-one manner can be inefficient,
particularly when dealing with multiple modalities simulta-
neously [Sun et al., 2023]. To overcome this inefficiency,
we use a set of bottleneck tokens, denoted as zb, as a central
message hub to facilitate communication with each modality,
drawing inspiration from [Nagrani et al., 2021]. The mul-
timodal bottleneck token set zb is randomly initialized and
the number of tokens is set to Tb, i.e., zb = {zi}Tb

i=1. Tb is
typically much smaller than Tv or Ta. To interact with uni-
modal features, we employ the multi-head attention mecha-
nism [Vaswani et al., 2017] as follows:{

zv→b=LayerNorm(zb+Att(Q
(v)
b ,Kv,Vv)),

za→b=LayerNorm(zb+Att(Q
(a)
b ,Ka,Va)),

(2)

where Qm
b = zbW

Q
bm,Km = zmWK

m and Vm = zmWV
m

are linear transformations of the bottleneck tokens and uni-
modal input sequences, m ∈ {v, a}. To model interac-
tions across different layers, we adopt a tanh-gating mecha-
nism [Hochreiter and Schmidhuber, 1997], which effectively
filters out irrelevant information while retaining valuable in-
formation flow by:

g
[ℓ]
v→b = Sigmoid(Wℓ

vb[z
[ℓ]
v,cls, z

[ℓ]
a,cls] + bℓvb),

g
[ℓ]
a→b = Sigmoid(Wℓ

ab[z
[ℓ]
v,cls, z

[ℓ]
a,cls] + bℓab),

z
[ℓ]
v→b = LayerNorm(z

[ℓ]
v→b + g

[ℓ]
v→b ⊙ z

[ℓ]
v→b),

z
[ℓ]
a→b = LayerNorm(z

[ℓ]
a→b + g

[ℓ]
a→b ⊙ z

[ℓ]
a→b),

(3)

where [, ] denotes the concatenation along the feature dimen-
sion, Wℓ

mb ∈ R(dv+da)×d are the layer-specific weight ma-
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Figure 3: Illustration of the architectural details of IRFB.

trices, and bℓmb ∈ Rd is the bias and m ∈ {v, a}. Denote
by zg =Concat(z

[ℓ]
v→b, z

[ℓ]
a→b) the temporal concatenation of

cross-attended feature sequences. To aggregate refined in-
formation from different modalities, the update rule of zb is
finally defined as:

z
[ℓ+1]
b = z

[ℓ]
b + Softmax(v⊤tanh(zgW + b)) · zg, (4)

where v, W, and b are layer-specific learnable parameters.
We omit the layer indexes of these parameters for brevity.
Remarks. A multimodal transformer equipped with IRFB
effectively disentangles the process of unimodal feature ac-
quisition from that of multimodal interactions, thus allowing
for the decoupled learning of inter-modal features through
modal fusion while ensuring sufficient and independent learn-
ing of unimodal features. Theoretically, our unimodal en-
coders can achieve the same performance as the unimodal
baselines when trained long enough.

3.2 Online Logit Modulation
After the encoding of a multimodal transformer, we obtain a
set of token representations {zv, za, zb} for the visual modal-
ity, audio modality, and fused modality, respectively. These
token representations will be pooled along the temporal di-
mension and fed into three independent classifiers to generate
the logits (also named logit vectors). That is, the pre-softmax
logits can be calculated as the following:

sm = W⊤
m · SeqPooling(zm), ∀m ∈ {v, a, b}, (5)

where W⊤
m ∈ Rd×C ,m ∈ {v, a, b} denote the three separate

linear classifiers. Here, the SeqPooling indicates the simple
sequence pooling, where the average of the output vectors is
taken as the summary representation.

Without loss of generality, a logit vector sm can be decom-
posed as sm = ∥sm∥2 ŝm, where ∥·∥ denotes the L2 norm
and ŝm is the unit vector in the same direction as sm. In
other words, ∥sm∥2 and ŝm indicate the magnitude and the
direction of the logit vector sm, respectively. Previous studies

have elucidated that distinct modalities exhibit varying levels
of convergence and generalization rates [Wang et al., 2020;
Nagrani et al., 2021]. Our objective is to devise a set of dy-
namic blending weights {wm}, ∀m ∈ {v, a, b} to improve
joint multimodal training, which ensures similar rates of pa-
rameter updates across different modalities during training.
To achieve this, we impose constraints on the magnitude of
logit vectors corresponding to each modality. In order to de-
termine the optimal magnitude value for each modality, we
take into account both the model’s convergence rate and gen-
eralization rate, similar to [Wang et al., 2020]. Concretely, we
gauge the generalization rate at the n-th iteration step using:

Gn = |Ldev(Θ
[0])− Ldev(Θ

[n])|, (6)

where Ldev represents the validation loss, and Θ denotes net-
work parameters. Similarly, we measure the convergence rate
C at the n-th iteration step as follows:

Cn =
∣∣|Ldev(Θ

[n])− Ltrain(Θ
[n])|

− |Ldev(Θ
[0])− Ltrain(Θ

[0])|
∣∣, (7)

where Ltrain denotes the training loss. We then compute
the generalization and convergence rates for each modality
m, denoted as {Gn,m} and {Cn,m}. A higher convergence
rate indicates a higher risk of overfitting for a modality.We
encourage the use of smaller logit magnitudes to counteract
overfitting and larger logit magnitudes to mitigate underfit-
ting. To this end, we can derive a set of modality-aware re-
balancing factors by:

{λn,v, λn,a, λn,b}=Softmax([
Gn,v

Cn,v
,
Gn,a

Cn,a
,
Gn,b

Cn,b
]). (8)

Building upon these modal rebalancing factors, we first out-
line a baseline for different modality logit magnitudes, which
can be an average logit norm of weighted modality logit vec-
tors: s̄n = Em∈{v,a,b}(||wm,n · sm,n||2). Then we construct
the target logit magnitude for each modality via λn,m · sn.
Our goal is to find an optimal set of blending logit coefficients
that modulate the magnitude of the logit vector per modality
to align the target logit magnitude. Therefore, the logit mod-
ulation loss can be formalized as follows:

Llogit=
∑

m∈{v,a,b}

∣∣wm · ||sm||2 − λm · s̄
∣∣. (9)

Note that the optimization of Eq. 9 is nonlinear due to the L2

norms involved in the expression. As a result, it is unlikely
to find a global analytical solution for the optimal values of
{wv, wa, wb}. Instead, we employ the gradient descent al-
gorithm to search for the optimal coefficients that lead to the
desired minima. Algorithm 1 describes a pipeline for solving
a set of logit coefficients using the SGD optimizer.

4 Experiment
4.1 Datasets and Metrics
Kinetics-Sounds (KS) [Arandjelovic and Zisserman, 2017]
is a subset of 36 human action classes selected from the
Kinetics dataset [Kay et al., 2017], comprising 10-second
videos sampled at 25fps from YouTube. In line with [Peng et
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Algorithm 1: Online Logit Modulation (OLM)
Input : Logit vectors {sv, sa, sb} output by unimodal and

cross-modal encoders; the training loss
Ltrain(m,n) and validation loss Ldev(m,n) for
each modality m at the nth iteration step; and the
learning rate η

Output: Logit Coefficients {wv,n, wa,n, wb,n}
1 Initialize the learning rate and the logit coefficients
{wv, wa, wb}, wv(0)← 1, wa(0)← 1, wb(0)← 1;

2 Compute the rebalancing fators {λv, λa, λb} according to
Eq. 8;

3 for i← 1 to max iteration step do
// compute an average ℓ2-norm of

different logit vectors
4 s̄← Em∈{v,a,b}(||wm · sm||2);

// compute the logit modulation loss
between the current weighted logit
norms and target ones

5 Llogit ← Eq. 9;
// update the coefficients using

stochastic gradient descent

6 wv(i)← wv(i− 1)− η ∗ ∂Llogit

∂wv
;

7 wa(i)← wa(i− 1)− η ∗ ∂Llogit

∂wa
;

8 wb(i)← wb(i− 1)− η ∗ ∂Llogit

∂wb
;

9 Return: {wv,n, wa,n, wb,n}={wv(i), wa(i), wb(i)};

al., 2022], we focus on 31 action categories that can be rec-
ognized visually and auditorily, including actions like playing
various musical instruments. This dataset contains 19,000 10-
second video clips, with 15,000 clips used for training, 1,900
for validation, and 1,900 for testing.
VGGSound [Chen et al., 2020a] is a large-scale video dataset
comprising 309 classes, with nearly 200K 10-second video
clips capturing a diverse range of audio events in every-
day life. Each clip’s sound source is visually presented in
the video, demonstrating clear audio-visual correspondence.
After filtering out unavailable videos, we obtained 168,618
videos for training and validation, and 13,954 for testing.
AVE [Tian et al., 2018] is a subset of the AudioSet
dataset [Gemmeke et al., 2017] designed for audio-visual
event localization. It comprises 28 event categories, consist-
ing of 4,143 10-second videos. This dataset encompasses a
diverse range of audio-visual events from various domains,
with each video containing at least one 2-second long audio-
visual event, annotated with frame-level boundaries. The
training, validation, and test sets are divided into 3,339, 402,
and 402 samples, respectively.
CREMA-D [Cao et al., 2014] is a multimodal dataset de-
signed for speech emotion recognition. It comprises 7,442
video clips, each lasting 2 to 3 seconds, featuring 91 actors
delivering concise utterances. The dataset encompasses six
of the most prevalent emotions: anger, happiness, sadness,
neutral, disgust, and fear. It consists of 6,698 samples for
training and validation, with 744 samples for testing.
MER-MULTI is a subchallenge of the MER2023 [Lian et
al., 2023], aiming to simultaneously recognize discrete emo-
tions and valence in given raw video clips. The discrete emo-
tion categories include happiness, neutral, anger, sadness,

VGGSound CREMA-D KS

Method Acc. mAP Acc. mAP Acc. mAP

Unimodal Baselines
Audio-only 44.3 48.4 52.5 54.2 55.2 57.4
Visual-only 31.0 34.3 41.9 43.0 43.5 45.8

Bimodal Fusion Baselines
Concat♢ 49.1 52.5 51.7 53.5 59.8 61.9
Sum 49.2 52.4 51.5 53.5 58.5 60.6
FiLM† 48.6 51.6 50.6 52.1 57.3 60.0
Gated‡ 49.3 52.2 51.7 53.3 59.1 62.1
Attention 49.6 51.7 52.4 54.9 60.3 63.2

GradNorm♢ 49.8 52.4 54.6 57.2 60.2 62.9
MMCosine♢ 50.1 52.9 57.7 60.3 61.5 64.4
AVSlowFast 50.8 53.7 61.6 64.2 62.6 64.7
G-Blend♢ 49.9 52.8 56.8 59.6 62.2 65.7
CUR 49.6 52.3 56.5 59.1 60.7 63.6
PMR♢ 50.2 52.5 61.8 64.5 62.8 65.6
OGM-GE♢ 50.6 53.9 61.9 63.9 62.3 65.2

OLM-Conv♢ 51.1 54.1 62.4 65.2 63.1 65.5

Table 1: Performance Comparison across the VGGSound, CREMA-
D, and KS datasets. Results marked by ♢ are obtained under the late
fusion by concatenation. To ensure fair comparisons, apart from
CUR and AVSlowFast, all approaches employ an identical encoder.

worry, and surprise. Valence is an emotional dimension with
values ranging from -5 to 5, reflecting the degree of emo-
tional pleasantness. This dataset comprises 3,373 video clips
for training and 411 video clips for testing.
SUNRGBD V1 [Song et al., 2015] comprises 10,335 RGB-
D images collected from different sensors. We evaluate OLM
on the scene classification task, which entails categorizing a
given RGB-D image into one of the predefined 19 scene cat-
egories. We partition the data into training and testing sets,
ensuring that approximately half of the data from each sensor
goes into two subsets. Given that some images were captured
from the same building or house with similar furniture styles,
we ensure that images from the same building are either en-
tirely within the training set or exclusively in the testing set.

The evaluation metrics employed in our experiments in-
clude the commonly used top-1 accuracy, F1-score, mean av-
erage precision (mAP), and mean squared error (MSE).

4.2 Experimental Settings
We evaluate two model variants. One variant is implemented
with traditional CNN-based encoders combined with late fu-
sion (refer to Fig. 2), termed OLM-Conv. The other variant
uses transformer-based encoders equipped with the Interme-
diate Representation Fusion Module (IRFM), referred to as
OLM-Trans. Both variants of our model employ the on-
line logit modulation strategy. Specifically, for OLM-Conv,
we use ResNet18 [He et al., 2016] as the encoders following
previous works [Zhao et al., 2018; Peng et al., 2022]. AVE,
Kinetics-Sounds, and VGGSound datasets consist of videos
with a duration of 10 seconds each. To process these videos,
we extract frames at a rate of 1fps and uniformly sample 3
frames from each clip, which serve as the visual input for our
model. For the audio data, we utilize a window of length 512
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Network AVE Localization (Acc. %)

Baseline G-Blend OGM-GE OLM-Conv

AVGA [2018] 72.0 72.2 72.8 72.6
MAFnet [2021] 73.2 73.8 74.1 74.8
PSP [2021] 76.2 76.5 76.9 77.3
CMBS [2022] 79.3 80.1 81.2 81.8

Table 2: Performance Evaluation of the Audio-Visual Event Local-
ization (AVE) task across different approaches in conjunction with
diverse backbone network architectures.

Figure 4: Confusion Matrix Comparison between models trained
with and without OLM on the SUNRGBD dataset, employing Places-
CNN as the feature extractor and late fusion by simple concatena-
tion. The average classification accuracy across 19 categories under
each modality (e.g., RGB, D (depth), and RGB-D) is recorded.

with an overlap of 353 to transform the raw audio data into
spectrograms of size 257× 1004 using the librosa [McFee
et al., 2015] library. As for SUNRGBD, we adopt Places-
CNN [Zhou et al., 2014], which reaches the optimal per-
formance for color-based scene classification on the SUN
database [Xiao et al., 2010], for feature extraction of both
RGB and depth images. Regarding CREMA-D, its video
clips last from 2 to 3 seconds. From each clip in CREMA-
D, we extract 1 frame and use a window of length 512 with
an overlap of 353 to convert the audio data into spectrograms
of size 257× 299. For MER-MULTI, we first extract hu-
man face images using the OpenFace toolkit. The pre-trained
MANet [Zhao et al., 2021], HuBERT [Hsu et al., 2021], and
MacBERT [Cui et al., 2020] models were employed for the
extraction of visual, audio, and textual features, respectively.
For OLM-Trans, we stack six standard transformer blocks
and IRFB blocks (cf. Sup. D for implementation details).

4.3 Comparison with State-of-the-Arts
We compared OLM with a wide range of baseline methods,
including two unimodal baselines and four simple bimodal
baselines: concatenation, summation, gated, and attention.
Additionally, we explored several advanced techniques for
multimodal fusion, alignment, and training, encompassing:

• FiLM [Perez et al., 2018] performs a simple feature-
wise affine transformation on the intermediate features

Modality Attention OLM-T-MBT OLM-T-IRFB

F1 (↑) E (↓) F1 (↑) E (↓) F1 (↑) E (↓)
Unimodal Baselines

Audio-only 65.7 1.27 65.7 1.27 65.7 1.27
Visual-only 57.5 1.38 57.5 1.38 57.5 1.38
Text-only 42.7 2.39 42.7 2.39 42.7 2.39
HOG-only 55.6 1.46 55.6 1.46 55.6 1.46

Bimodal Fusion Results
A+T 67.1 1.16 71.2 0.89 73.8 0.84
A+V 73.2 0.86 77.9 0.68 80.8 0.76
V+T 61.2 1.28 65.3 1.21 68.6 1.21
A+H 72.7 0.88 77.3 0.69 80.6 0.77

Mulitmodal Fusion Results
A+V+T 75.8 0.92 78.4 0.85 80.2 0.74
A+H+T 74.9 0.91 77.1 0.89 80.1 0.76
A+V+H 76.2 0.89 78.9 0.81 81.1 0.70
A+V+T+H 76.6 0.87 79.5 0.78 81.4 0.72

Table 3: Impact of OLM applied to different modalities and compar-
ison regarding distinct middle fusion manners. Here, ‘F1’ denotes
the F1-score, while ‘E’ signifies the mean squared error. ‘↑’ indi-
cates the higher values the better performance, while ‘↓’ indicates
the lower values the better performance. All methods share identical
unimodal Transformer-based encoders and an attention fusion.

of a neural network based on conditional information.
• GradNorm [Chen et al., 2018] proposes gradient nor-

malization to balance training in deep multitask models
by dynamically tuning gradient magnitudes.

• MMCosine [Xu et al., 2023b] imposes modality-wise
L2 normalization to features and weights by cosine sim-
ilarity towards balanced multi-modal learning.

• AVSlowFast [Xiao et al., 2020] is a multimodal exten-
sion of SlowFast [Feichtenhofer et al., 2019], which in-
corporates a faster audio pathway and deeply fuses audio
and visual features at multiple levels.

The remaining comparison methods for modulating the pace
of multimodal training, including G-Blend [Wang et al.,
2020], CUR [Wu et al., 2022], OGM-GE [Peng et al., 2022]
and PMR [Fan et al., 2023], are introduced in § 2. Table 1
reveals several intriguing observations: i) a performance im-
balance among modalities, with the audio modality exhibit-
ing dominance. For instance, the performance of audio-only
baselines significantly surpasses that of visual-only baselines
across the three datasets; ii) Occasionally, the performance
of unimodal baseline surpasses that of simple multimodal fu-
sion baselines, as witnessed in the case of CREMA-D where
the audio-only baseline outperforms all bimodal fusion base-
lines. This indicates potential under-optimization of mul-
timodal models due to naive multimodal joint training; iii)
The proposed OLM strategy exhibits advantages compared to
the other competitors. Specifically, OLM-Conv attains supe-
rior or comparable accuracy and mAP scores across the three
datasets. To further validate the versatility of our strategy,
we apply OLM to the AVE localization task. Table 2 com-
pares OLM-Conv with several competitive counterparts on
this task. As seen, when combined with diverse AVE back-
bone networks, OLM-Conv yields the most significant im-
provement over the baseline in most cases, confirming the
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Figure 5: Visualization of L2 norms of logit vectors corresponding
to each class for both visual and audio modalities over increasing
training epochs. Figures (A) and (B) show the logit norms without
OLM, while figures (C) and (D) depict logit norms with OLM applied.

effectiveness of logit modulation in bolstering multimodal
training. Worth noting is that unlike G-Blend and OGM-GE,
our OLM neither necessitates additional unimodal networks to
compute per-modality weights nor involves intricate gradient
calibrations, therefore boasting greater out-of-the-box appli-
cability. Furthermore, we present the confusion matrices gen-
erated by models with and without the OLM strategy applied
in Fig. 4. The OLM-trained model exhibits pronounced en-
hancement over the non-OLM-trained model (w.r.t. acc. and
recall), highlighting the OLM’s generalization ability.

4.4 Ablation Study
Impact of Different Modalities and IRFB
Table 3 presents the unimodal baseline results and attention
fusion-based multimodal baseline results on MER-MULTI.
Particularly, we investigate two variants of our model, namely
OLM-T-MBT and OLM-T-IRFB. The former employs a non-
decoupled multimodal attention bottleneck (MBT) [Nagrani et
al., 2021] for cross-modal mid fusion, while the latter em-
ploys IRFB for mid fusion. Both model variants share iden-
tical transformer-based unimodal encoders and use the same
attention late fusion to generate unimodal and cross-modal
outputs. In Table 3, several observations merit attention: a)
Disparities in performance among different modalities are ev-
ident. The text modality performs worst, while the audio
modality performs best; b) OLM substantially boosts the per-
formance of any modality combination baseline, showcasing
its versatility; c) OMT-T-IRFB outperforms OMT-T-MBT,
with an average improvement of approximately 2%.

Visualization of Logit Modulation
Fig. 5 illustrates the class-specific L2 norm of logit vectors for
the visual and audio modalities. It is evident that, as training
progresses, the magnitude of logit vectors per class continues
to increase. However, the rate of logit norm growth varies
across modalities, with the logit norm for the audio modal-
ity increasing more rapidly than that for the visual modality.

Figure 6: (A) Test accuracy of unimodal and audiovisual fusion
via concatenation. (B) Evolution of the batch-averaged logit scores
corresponding to each class for visual and audio modalities during
training. (C) Test accuracy of unimodal and audiovisual with OLM
applied. (D) The batch-averaged unimodal logit scores with OLM.

This suggests a faster learning pace for audio modality fea-
tures and potential underfitting in the visual modality. OLM
operates on the logit magnitudes of diverse modalities. Anal-
ysis of Fig. 5 (C) and (D) reveals that the rate of logit norm
growth in the audio modality decelerates, whereas it accel-
erates in the visual modality, thus achieving modality-aware
balanced training. The same trend is also discernible from
the logit score curves in Fig. 6 (B) and (D). Fig. 6 (A) and (B)
aptly demonstrate that OLM mitigates the underfitting issue
of visual modality in the context of multimodal joint training.
These figures intuitively underscore the benefits of OLM in the
realm of multimodal training: the ability to foster more robust
multimodal features while ensuring comprehensive unimodal
feature training, thereby unlocking the genuine potential of
multimodal models.

5 Conclusion
In this work, we present two core components, IRFB and
OLM, tailored to enhance multimodal training. Specifically,
IRFB efficiently alleviates potential underfitting concerns of
unimodal networks in imbalanced multimodal learning by
disentangling the learning of unimodal features from multi-
modal interactions. OLM, unrestricted by model architectures
and fusion methods, mitigates the suppression of dominant
modalities on other modalities. This is achieved by regulating
the magnitude of the logit vector for each modality, aligning
it with its modality-aware target. Empirical studies have fully
unveiled the efficacy of IRFB and the superiority of OLM over
prevailing multimodal training calibration alternatives.
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