Incorporating Schema-Aware Description into Document-Level Event Extraction

Zijie Xu, Peng Wang, Wenjun Ke, Guozheng Li, Jiajun Liu, Ke Ji, Xiye Chen and Chenxiao Wu
1School of Computer Science and Engineering, Southeast University
2Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications (Southeast University), Ministry of Education
3Nanjing University of Finance and Economics
{zijixu, pwang, kewenjun, gzli, jiajliu, keji}@seu.edu.cn

Abstract

Document-level event extraction (DEE) aims to extract the structured event information from a given document, facing two critical challenges: (1) event arguments always scatter across sentences (arguments-scattering); (2) multiple events can co-occur in one document (multi-event). Most recent studies mainly follow two simplified settings to ease the challenges: one simplifies DEE with the no-trigger-words design (NDEE), and the other focuses on event argument extraction (DEAE), a sub-task of DEE. However, the former excludes trigger extraction and suffers from error propagation in the sub-tasks. The latter relies heavily on the gold triggers as prerequisites and struggles to distinguish multiple arguments playing the same role in different events. To address the limitations above, we propose a novel joint trigger and argument extraction paradigm SEELE to enhance the DEE model via incorporating SchEma-aware descriptions into Document-Level Event extraction. Specifically, the schema-aware descriptions are leveraged from two aspects: (1) guiding the attention mechanism among event-aware tokens across sentences, which relieves arguments-scattering without error propagation; (2) performing the fine-grained contrastive learning to distinguish different events, which mitigates multi-event without gold triggers. Extensive experiments show the superiority of SEELE, achieving notable improvements (2.1% to 9.7% F1) on three NDEE datasets and competitive performance on two DEAE datasets. Our code is available at https://github.com/TheoryRhapsody/SEELE.

1 Introduction

Event extraction (EE) [Deng et al., 2015] aims to extract event triggers and corresponding arguments from natural language texts, facilitating various downstream applications, such as information retrieval [Li et al., 2023], recommender systems [Lu et al., 2016], and question answering [Liu et al., 2023] in finance, healthcare, and law industries.

In real-world scenarios, events are usually distributed in several sentences, which raises two critical challenges for document-level event extraction (DEE) [Zheng et al., 2019]: (1) Arguments-scattering, an event contains a cluster of arguments that may scatter across multiple sentences. As shown in Figure 1, the arguments of Event #2, Equity Overweight, are scattered in sentences [2] and [8]. Therefore, it is vital to model long-distance dependency among these arguments. (2) Multi-event, a document is likely to contain various events. For example, the document in Figure 1 includes two events, Equity Overweight and Equity Underweight, sharing several common arguments. Thus, identifying each event and which arguments participate in the same event is non-trivial.

Although enormous efforts have been devoted to DEE, most follow two simplified settings to ease the above challenges. One is No-trigger-words DEE (NDEE) [Zheng et al., 2019; Xu et al., 2021; Wang et al., 2023], which reformulates DEE as a table-filling task [Li et al., 2024] with the no-trigger-words design. NDEE allows decomposing DEE
into a set of relatively simple sub-tasks to ease the arguments-scattering challenge: (1) extracting entities in the document as the candidate arguments; (2) modeling long-distance dependency among candidate arguments; (3) detecting the types of events and classifying the roles of the candidate arguments for each detected event type. However, errors exist in entity extraction [Xu et al., 2021], leading to error propagation in each sub-task. The other is Document-level Event Argument Extraction (DEAE) [Li et al., 2021; Xu et al., 2022; Ma et al., 2022], which aims to extract arguments of the target event with a given gold trigger. Since the triggers are given as prerequisites, there is no need to identify which events occurred in the document, alleviating the multi-event challenge. However, DEAE methods are trained to extract the arguments for one target event at a time, neglecting the correlation and discrimination of different events. Thus, DEAE methods struggle to distinguish different arguments that participate in multiple events and play the same argument role.

Intuitively, the event schema predefines each event type and corresponding argument roles, which can instruct DEE models to learn the scattering event information and the characteristics of different events [Shang et al., 2024]. Therefore, we propose a novel learning paradigm SEELE for joint document-level event trigger and argument extraction (JDEE) via schema-aware descriptions constructed based on the event schema. Figure 1 demonstrates an example of the Equity Overweight and Equity Underweight events with the corresponding schema-aware descriptions. Note that the schema-aware description is natural language text containing the complete label information of the specific event type, which can serve as the guideline for understanding the DEE task.

Specifically, to tackle the arguments-scattering challenge, each schema-aware description is applied to query the tokens semantically relevant to the event conforming to this schema, namely event-aware tokens. We devise a description-guided attention mechanism to model the long-distance dependency among these event-aware tokens adaptively. However, the description may query some distracting entities. For example, the entities Morningstar, Inc. and Anuj Ramesh Shah in Figure 1 are also equity holders but do not participate in any event. Thus, we further assign a trainable query to filter event-distracting tokens via a gradient reverse layer (GRL) [Ganin and Lempitsky, 2015]. To relieve the multi-event challenge, each schema-aware description serves as the prototype of a specific event type to enhance the semantic discrimination of different events via fine-grained span-level contrastive learning. For Parin Shah and Monisha Shah in Figure 1, their representations are encouraged to be similar to the corresponding argument role Equity Holder in Description #1 and Description #2, respectively, but to be dissimilar from each other. Finally, for effective and efficient JDEE, we devise a novel event complete graph decoding strategy, where the event trigger and all arguments within each event are connected via undirected edges, naturally forming a complete graph. Then, all events can be decoded from the graph in a parallel process.

In summary, the main contributions of this work are three-fold:

• We argue that schema knowledge is vital to understanding the structural event information from the document and propose a new JDEE paradigm that leverages schema-aware descriptions to enhance DEE models.

• We devise a new description-guided attention mechanism to model the long-distance dependency and a fine-grained contrastive learning to distinguish various events, alleviating two challenges of DEE.

• We conduct extensive experiments on five DEE benchmarks, demonstrating that our model achieves notable improvements (2.1% 9.7% F1) on NDEE benchmarks and competitive performance on DEAE benchmarks.

2 Related Work

No-trigger-words DEE. Early studies [Zheng et al., 2019] formulate DEE as an event schema table-filling task where an event is defined by an event type and a set of arguments without triggers. To fully utilize all entities in the document, Doc2EDAG [Zheng et al., 2019] and GIT [Xu et al., 2021] adopt an entity-based directed acyclic graph. DE-PPN [Yang et al., 2021] extracts all events in parallel. ReDEE [Liang et al., 2022] further models the relation information between entities. PTPCG [Zhu et al., 2022] proposes a graph-based decoding strategy. ProCNNet [Wang et al., 2023] decodes events based on Hausdorff distance minimization. IPGPF [Huang et al., 2023] proposes an iteratively parallel generation method with the pre-filling strategy. However, these NDEE methods follow a pipeline paradigm, leading to error propagation.

Document-level Event Argument Extraction. DEAE is a challenging sub-task of DEE. The span-based methods predict the argument role for candidate spans in the document. For instance, TSAR [Xu et al., 2022] introduces an AMR parser to identify candidate spans and devises an AMR interaction graph. PAIE [Ma et al., 2022] and TabEAE [He et al., 2023] leverage slotted prompts to obtain candidate spans for each argument role. The generation-based methods formulate DEE as a sequence-to-sequence task. For example, BART-DEE [Li et al., 2021] leverages generative PLMs to generate arguments of the target event. However, most of them ignore the correlation and discrimination of multiple events.

3 Methodology

3.1 Preliminaries

Task Definition. For DEE, an event schema S_t consists of an event type t and an argument role set $R_t = \{r_i\}_{i=1}^R$. Given a document $D = \{w_i\}_{i=1}^{|D|}$, it contains a set of mentioned events \mathcal{E}. For each event $e \in \mathcal{E}$ corresponds to a specific schema S_t, DEE aims to detect its event type t, extract the trigger $trg \in D$ and the corresponding argument set $\{(arg, r_i)\}$, where arg $\in D$ is a text span representing an argument and r_i is the role that arg plays. To unify DEE scenarios with (or without) triggers, we treat the event trigger as a special argument, i.e., adding the pair (trg, t) to $\{(arg, r_i)\}$, where the event type t is the special argument role of the event trigger.
Schema-aware Description Construction. A description D_t corresponds to an event schema S_t, covering the argument role set R_t of the specific event type t, allowing the DEE model to capture the interactions among various argument roles. For example in Figure 2, given t as Exhibit, R_t as $\{\text{Subject, Equipment, Date, Location}\}$, the schema-aware description is constructed as follows:

In an Exhibit event, the Subject (company, nation, army) Exhibits (displays, presents, demonstrates) the Equipment (warship, aircraft, weapon system) to the public, media, and relevant stakeholders at specified Date (year, month, day) and designated Location (defense expo, airshow, military base).

D_t contains complete label information of S_t, where the underlined spans serve as argument role slots. Each slot consists of two parts: the argument role r_t itself and several referential words in $\langle \cdot \rangle$, which are the possible entity types of the arguments play r_t or the synonyms of t. The referential words are heuristically determined according to the statistics in the training dataset, aiming to enrich the semantics of labels.

3.2 Architecture Overview

The overall architecture is illustrated in Figure 2, containing three main components: description-guided attention mechanism, fine-grained contrastive learning, and event complete graph decoder. Given a document D and the schema-aware descriptions $\{D_t\}_{t=1}^T$, SEELE first separately encodes D and D_t into fixed-length embedding sequences $H_D = \{h_t\}_{t=1}^T$ and $X_t = \{x_t\}_{t=1}^T$, where $h_t \in \mathbb{R}^d$, $x_t \in \mathbb{R}^d$ and d is the hidden state dimension. Then the [CLS] token from D_t is adopted to query the event-aware tokens for modeling the intra-event and inter-event long-distance dependency. Simultaneously, fine-grained contrastive learning aligns gold argument spans in D and argument role slots in D_t at span level, enhancing the representations of gold arguments. Finally, the event complete graph decoder forms predicted arguments into the complete graph and decodes each event from the graph.

3.3 Description-guided Attention Mechanism

Event-aware Token Querying. For each D_t, we apply the [CLS] token embedding $x_{[CLS]}$ of D_t as a query, document embedding H_D as the keys to obtain the event-aware tokens semantically relevant to the event conforming to schema S_t:

$$M_t = \text{sigmoid} \left(\frac{x_{[CLS]} \cdot H_D^\top}{\sqrt{d}} \right)$$

(1)

where sigmoid (\cdot) is a dot scaled similarity function to estimate the semantic similarity, and M_t denotes the similarity matrix. We use a threshold Θ_1 to separate the event-aware tokens and derive a mask matrix M_t from M_t:

$$M_{t,i} = \begin{cases} 1, & M_t > \Theta_1 \\ -\infty, & \text{Otherwise} \end{cases}$$

(2)

Distracting Token Discarding. Considering that a document naturally contains more information than a single sentence, some distracting tokens or entities can be queried and mislead the DEE task. Intuitively, the tokens having negative effects on event extraction are probably distracting tokens. Therefore, we employ a learnable parameter $x_q \in \mathbb{R}^d$ as the query of distracting tokens and optimize x_q via a separate event type classification task with a gradient reverse layer (GRL) [Ganin and Lempitsky, 2015]:

$$H_q = \text{softmax} \left(\frac{x_q \cdot H_D \odot M_q}{\sqrt{d}} \right) \cdot H_D$$

(3)

$$P_q = \text{softmax} \left(\text{GRL} (H_q) \cdot W_q + b_q \right)$$

(4)

$$L_{ce} = \text{CrossEntropy} (Y_D, P_q)$$

(5)

where M_q is another mask matrix to filter the distracting tokens, \odot is the Hadamard product, $H_q \in \mathbb{R}^d$ is the distracting feature queried by x_q, $W_q \in \mathbb{R}^{d \times T}$ and $b_q \in \mathbb{R}^T$ are the
weights and biases of the event classifier, \(Y_D \) is the gold event type label. The GRL layer changes the gradient sign during backpropagation, which enables \(x_k \) to pay more attention to distracting tokens by gradient ascent to increase \(L_{ce} \).

Intra-event Attention. To model the long-distance dependency among event-aware tokens of one event, we apply an intra-event transformer layer to achieve the intra-event representation of the document \(D \): \(H_D^{\text{intra}} = \text{Transformer}^{\text{intra}}(H_D) \). We devise a masked-attention matrix \(M_{\text{intra}}^{i,j} \) based on the two mask matrices \(M_i \) and \(M_j \) mentioned above to guarantee that two tokens \(h_i \) and \(h_j \) can only attend to each other when they are not distracting but event-aware tokens of one event:

\[
M_{\text{intra}}^{i,j} = \begin{cases}
1, & M_{i,i} = M_{j,j} = 1, M_{i,j} = M_{j,i} = -\infty \\
-\infty, & \text{Otherwise}
\end{cases}
\]

where \(Q, K, V \) refers to query, key, and value matrix of the intra-event transformer layer.

Inter-event Attention. To further model the correlation of different events, we employ \(T \) learnable parameters \(\{v_t\}_{t=1}^T \), and each of them serve as a virtual event representation under a specific schema \(S_t \) to integrate event-aware tokens into event-level features \(H_T = \{H_{t=1}^T \} \):

\[
H_t = \text{softmax} \left(\frac{v_t \cdot H_D^{T} \odot M_t}{\sqrt{d}} \right) \cdot H_D
\]

We concatenate intra-event representation \(H_D^{\text{intra}} \) with \(H_T \) and apply another Transformer layer to perform information propagation among different events, denoted as \(H_D^{\text{inter}}, H_T^{\text{inter}} = \text{Transformer}^{\text{inter}} \left(\{H_D^{\text{intra}}, H_T \} \right) \), where \(H_D^{\text{inter}} \) is the inter-event representation of document \(D \). We devise another masked-attention matrix \(M_{\text{inter}}^{i,j} \) to ensure tokens \(h_i \) can only attend to the token \(h_j \) related to it. The constraints are as follows: (1) token \(h_i \) and \(h_j \) are event-aware tokens of one event; (2) token \(h_i \) and \(h_j \) are different event-level features; (3) token \(h_i \) is an event-level feature \(H_t \) and token \(h_j \) is the event-aware token integrated into \(H_t \).

3.4 Fine-grained Contrastive Learning

Paralleling the description-guided attention, a fine-grained contrastive learning is applied to align each argument in \(D \) with the corresponding argument role slot in \(D_1 \), enhancing the semantic discrimination of various arguments.

We denote a text span representation in the document embedding \(H_D \) as \([h_a : h_b] \), a contiguous embedding sequence with a start token \(h_a \) and an end token \(h_b \). A gold argument representation of a specific argument role \(r_i \) is then denoted as \([h_{r,\alpha} : h_{r,\beta}] \). For each argument role slot in \(D_1 \), we mean-pool its embedding sequence from \(X_o \) to obtain the slot representation \(s_r \) of argument role \(r_i \). Intuitively, the text spans having the same start/end tokens of the gold argument \([h_{r,\alpha} : h_{r,\beta}] \) are potentially related to \(s_r \). Therefore, the optimization goal is to push the slot representation \(s_r \) close to the gold start token \(h_{r,\alpha} \) and the gold end token \(h_{r,\beta} \) (positive tokens), and far away from other distracting tokens (negative tokens). Specifically, we apply two linear layers to map \(s_r \) into the start/end representations \(s_{r,\alpha} \) and \(s_{r,\beta} \) as the anchors and devise the fine-grained infoNCE loss:

\[
L_{\text{start}} = -\log \frac{\exp(h_{r,\alpha} \cdot s_{r,\alpha}/\tau)}{\sum_{h_{r,\alpha} \in \mathcal{U}_{r,\alpha}} \exp(h_{r,\alpha} \cdot s_{r,\alpha}/\tau)}
\]

\[
L_{\text{end}} = -\log \frac{\exp(h_{r,\beta} \cdot s_{r,\beta}/\tau)}{\sum_{h_{r,\beta} \in \mathcal{U}_{r,\beta}} \exp(h_{r,\beta} \cdot s_{r,\beta}/\tau)}
\]

\[
L_n = (L_{\text{start}} + L_{\text{end}})/2
\]

where \(\tau \) is a temperature hyper-parameter, \(\mathcal{U}_{r,\alpha} \) and \(\mathcal{U}_{r,\beta} \) are two sets of negative tokens that are not the start/end tokens of the gold arguments with the argument role \(r_i \).

3.5 Event Complete Graph Decoder

Considering that events are structured information, it is vital to identify which arguments participate in the same event. Thus, we devise an event complete graph to explicitly model the event structure and decode each event from the graph.

Specifically, we utilize three Global Pointer Networks (GPs) [Su et al., 2022] to extract each argument (or trigger) from the document and construct the event complete graph simultaneously, without any error propagation. Given the inter-event document representation \(H_D^{\text{inter}} \), the first GP is span-specific, adopted to identify which text span \([h_{r,\alpha} : h_{r,\beta}] \in H_D^{\text{inter}} \) is a gold argument of a specific argument role \(r_i \). The second GP is start-token-specific, which aims to identify and connect two start tokens of any two gold arguments within one event. Similarly, the third GP is applied for two end tokens of any two gold arguments within one event. Compared with entities, event arguments are much sparser in a document. To optimize these three GPs, we apply Circle loss [Sun et al., 2020] to alleviate label imbalance of gold arguments and negative spans:

\[
L_c = \log(1 + \sum_{[h_{r,\alpha} : h_{r,\beta}] \in \mathcal{P}} e^{-s([h_{r,\alpha} : h_{r,\beta}])})
\]

\[
+ \log(1 + \sum_{[h_{r,\alpha} : h_{r,\beta}] \in \mathcal{N}} e^s([h_{r,\alpha} : h_{r,\beta}]))
\]

\[
L_{qp} = (L_{\text{span}} + L_{\text{start}} + L_{\text{end}})/3
\]

where \(s(\cdot) \) is the score function in GP [Su et al., 2022], \(\mathcal{P} \) denotes the set of gold argument spans, \(\mathcal{N} \) denotes the set of negative spans that are not arguments.

In the inference phase, all arguments extracted by the first GP are connected via the second and third GP according to whether they participate in the same event, forming the event complete graph \(G_E \) = (\(V, E \)). \(V = \{(h_{r,\alpha} : h_{r,\beta}, r_i)\} \) is the extracted argument node set and \(E = \{ t \}_{t=1}^T \) is the edge set defined by the event type. Each event \(e \) in the document \(D \) corresponds to a complete subgraph \(G_E^{e \in \mathcal{D}} \in G_E \). We apply Bron-Kerbosch algorithm [Bron and Kerbosch, 1973] to search each complete subgraph \(G_E^{e \in \mathcal{D}} \) until all events and their corresponding argument set \(\{\{arg, r_i\}\} \) are decoded from \(G_E \).

3.6 Overall Optimization

We apply a multi-task joint training strategy by combining the three training losses mentioned above, and the overall training objective is a weighted sum of all losses:

\[
L = \lambda_1 L_c + \lambda_2 L_n + L_{qp}
\]

where \(\lambda_1 \) and \(\lambda_2 \) are applied to balance the optimization.
4 Experiments

4.1 Experiment Setup

Dataset. We conduct trigger extraction and argument extraction on five DEE datasets divided into two settings. NDEE Benchmarks: (1) ChFinAnn dataset [Zeng et al., 2019] is a widely used financial dataset without trigger annotations. (2) DuEE-Fin dataset [Han et al., 2022] is another classic financial DEE dataset. (3) FNDEE is a recent military news dataset. DEAE Benchmarks: (1) RAMS [Ebner et al., 2020] is a typical DEAE news dataset containing news articles from Reddit. (2) WikiEvents [Li et al., 2021] is another commonly used DEAE dataset based on English Wikipedia articles. We follow the official train/dev/test split. Since DuEE-Fin has not released gold labels in the test set and the online evaluation does not cover trigger extraction, we follow previous work [Liang et al., 2022; Wang et al., 2023] that uses the development set as the test set and split 500 documents from the training set as the development set.

Evaluation Metric. For trigger extraction, we adopt the criteria defined in previous work [Li et al., 2013]: A trigger is correctly extracted if its span and event type match those of a gold trigger. For argument extraction on NDEE benchmarks, we follow previous studies [Zheng et al., 2019; Xu et al., 2021]: For each predicted event, the most similar gold event is matched without replacement. Then, an argument in the predicted event is correctly extracted if its span and argument role match those of an argument in the gold event. For argument extraction on DEAE benchmarks, we follow previous work [Li et al., 2021; He et al., 2023] and adopt the typical DEAE metrics: (1) Argument identification (Arg-I), where an argument is correctly identified if its span and event type match any gold argument. (2) Argument classification (Arg-II), where an argument is correctly classified if its argument role is also correct. The metrics above use micro-averaged precision (P), recall (R), and F1 scores (F1).

Baselines. For fair and strictly consistent comparison, we compare SEELE with strong baselines in three categories. Trigger Extraction Baselines: To verify the performance of trigger extraction, we make comparisons with four trigger extraction baselines: BERT-CRF [Lafferty et al., 2001], EEQA [Du and Cardie, 2020], MLBiNet [Lou et al., 2021], and EDM3 [Anantheswaran et al., 2023]. NDEE Baselines: To evaluate argument extraction on NDEE benchmarks, several competitive models are taken into consideration: Doc2EDAG [Zheng et al., 2019], DE-PPN [Yang et al., 2021], GIT [Xu et al., 2021], PTPCG [Zhu et al., 2022], ReDEE [Liang et al., 2022], ProCNet [Wang et al., 2023], and IPGPF [Huang et al., 2023]. DEAE Baselines: To assess argument extraction on DEAE benchmarks, we further choose several state-of-the-art DEAE baselines: BART-Gen [Li et al., 2021], EEQA [Du and Cardie, 2020], CUP [Lin et al., 2022], PAIE [Ma et al., 2022], TSAR [Xu et al., 2022], TabEAE [He et al., 2023].

<table>
<thead>
<tr>
<th>Model</th>
<th>DuEE-Fin</th>
<th>FNDEE</th>
<th>RAMS</th>
<th>WikiEvents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>F1</td>
<td>P</td>
</tr>
<tr>
<td>BERT-CRF</td>
<td>95.4</td>
<td>86.3</td>
<td>90.6</td>
<td>83.8</td>
</tr>
<tr>
<td>EEQA</td>
<td>88.7</td>
<td>93.1</td>
<td>90.8</td>
<td>77.4</td>
</tr>
<tr>
<td>MLBiNet</td>
<td>88.8</td>
<td>91.4</td>
<td>90.1</td>
<td>74.0</td>
</tr>
<tr>
<td>EDM3</td>
<td>87.3</td>
<td>94.3</td>
<td>90.9</td>
<td>73.6</td>
</tr>
<tr>
<td>SEELE</td>
<td>90.3</td>
<td>93.6</td>
<td>91.9</td>
<td>76.7</td>
</tr>
</tbody>
</table>

Table 1: Main results of trigger extraction on four datasets. The bold scores indicate the best results and underlined scores indicate the second best results.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Model</th>
<th>EF</th>
<th>ER</th>
<th>EU</th>
<th>EO</th>
<th>EP</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Doc2EDAG†</td>
<td>70.2</td>
<td>87.3</td>
<td>71.8</td>
<td>75.0</td>
<td>77.3</td>
<td>78.8</td>
</tr>
<tr>
<td></td>
<td>DE-PPN†</td>
<td>73.5</td>
<td>87.4</td>
<td>74.4</td>
<td>75.8</td>
<td>78.4</td>
<td>79.9</td>
</tr>
<tr>
<td>NDEE</td>
<td>GT†</td>
<td>73.4</td>
<td>90.8</td>
<td>74.3</td>
<td>76.3</td>
<td>77.7</td>
<td>80.3</td>
</tr>
<tr>
<td></td>
<td>PTPCG</td>
<td>71.4</td>
<td>91.6</td>
<td>71.5</td>
<td>72.2</td>
<td>76.4</td>
<td>79.4</td>
</tr>
<tr>
<td></td>
<td>ReDEE†</td>
<td>74.1</td>
<td>90.7</td>
<td>75.3</td>
<td>78.1</td>
<td>80.1</td>
<td>81.9</td>
</tr>
<tr>
<td></td>
<td>ProCNet†</td>
<td>75.7</td>
<td>93.7</td>
<td>76.0</td>
<td>72.0</td>
<td>81.3</td>
<td>83.0</td>
</tr>
<tr>
<td></td>
<td>IPGPF‡</td>
<td>73.6</td>
<td>92.0</td>
<td>76.1</td>
<td>74.8</td>
<td>80.9</td>
<td>81.3</td>
</tr>
</tbody>
</table>

Table 2: Main results (F1) of argument extraction of 5 event types on ChFinAnn. **Overall** denotes the overall performance of all event types. † means the results from [Wang et al., 2023]. ‡ means the results from [Huang et al., 2023].

4.2 Main Results

Table 1 illustrates the main results of trigger extraction on four benchmarks. Though SEELE is designed for JDEE, it consistently outperforms other trigger extraction baselines by 1.0% ~ 4.1% F1, including the document-level event detection methods MLBiNet and EDM3. Compared with the second-best EEQA, SEELE leverages schema-aware descriptions to enhance trigger extraction, which is more effective than the natural questions devised in EEQA.

Table 2 demonstrates the main results of argument extraction on ChFinAnn, a classical NDEE dataset without trigger annotations. SEELE achieves an absolute improvement in the overall performance by 2.1% F1, compared with other NDEE baselines. For specific event types, the F1 scores are significantly improved by 3.1% and 4.3% on Equity Freeze (EF) and Equity Overweight (EO) events, respectively. Most events of these two types involve more sentences than others, aggravating the arguments-scattering problem. Such improvement verifies that schema knowledge contributes to modeling interactions of arguments scattered across the document.

As shown in Table 3, SEELE achieves state-of-the-art performance on most event types in DuEE-Fin and surpasses the previous best IPGPF in the overall performance by 4.0% F1. It can be seen that most NDEE methods decrease notably compared with the results on ChFinAnn (shown in Table 2), possibly due to more argument roles in DuEE-Fin (up to 92). On the contrary, SEELE exhibits distinct improvements concerning the SR, EP, CP, and SC events by 7.4% ~ 7.9% F1. It demonstrates the effectiveness of schema-aware descriptions in enhancing the semantic discrimination of various argument roles. In addition, the latest state-of-the-art IPGPF delivers the best results on FI, GB, and BG events.

1https://www.datafountain.cn/competitions/638/datasets
The average number of these events is less than 50, resulting in less-than-satisfactory results. However, IPGPF devises an iterative generation method to utilize historical results with the pre-filling strategy, which eases the inadequate samples. Note that SEELE consistently outperforms NDEE baselines on all event types in FNDEE and has significant improvement in the overall performance by 9.7%, as illustrated in Table 4. Such results are attributed to the error propagation in NDEE methods. All NDEE methods adopt CRF-based entity extraction to obtain candidate arguments. Thus, the performance is subject to the accuracy of entity extraction. FNDEE contains massive nested entities compared with ChFinAnn and DuEE-Fin, while the CRF-based approaches are not applicable to identifying the span boundary of these nested entities. In addition, the average length of all arguments in FNDEE is more than eight characters, and around 500 arguments contain over 30 characters, making it non-trivial to extract the candidate arguments. As shown in Table 5, the entity extraction performance of the NDEE models drops heavily on FNDEE. The errors of entity extraction are more than 30%, severely influencing the subsequent argument role classification and leading to unfavorable results.

Table 6 reports the main results of argument extraction of 8 event types on the RAMS and WikiEvents datasets. † means the results from [Xu et al., 2023].

4.3 Further Analysis

Arguments-scattering. To verify the effectiveness of SEELE in extracting the scattering arguments, we follow the previous work [Xu et al., 2021] dividing ChFinAnn into four equal-sized subsets I/II/III/IV with growing average number of sentences involved in the events. Meanwhile, we follow previous work [Ma et al., 2022; Xu et al., 2022] that split RAMS into five subsets according to the sentence distance between the argument and trigger (i.e., -2 to 2). Figure 3 (left) demonstrates that SEELE outperforms the strongest NDEE baselines on all subsets, especially on the most challenging IV, by 4.4% F1. Figure 3 (right) shows that SEELE significantly improves the ability to extract the scattering arguments, yielding 3.9% and 8.3% improvement when the arguments are two sentences before and behind the triggers. It indicates that SEELE proficiently captures the long-distance dependency via the description-guided attention mechanism, which mitigates the arguments-scattering challenge.
Multi-event. To assess SEELE’s performance in the multi-event scenario, we divide the test set of four benchmarks into the single-event set containing documents with only one event and the multi-event set containing multiple events. As shown in Figure 4, SEELE demonstrates competitive performance on the single-event set and dramatically outperforms all strongest baselines on the multi-event set, improving about 5%, 6%, 11% and 3% on ChFinAnn, DuEE-Fin, FNDEE, and WikiEvents, respectively. In addition, we find that SEELE is inferior to DEAE baselines on the single-event set of WikiEvents. It can be attributed to the fact that DEAE baselines do not predict redundant events (False-Positive) with given gold triggers, providing some advantage to the performance of DEAE baselines. Nevertheless, SEELE achieves state-of-the-art performances in multi-event scenario.

Same-Role. In multi-event scenario, multiple arguments participating in different events can play the same argument role. To evaluate SEELE’s ability to distinguish the same-role arguments across different events, we split the test set of WikiEvents according to the number of arguments playing the same role. As demonstrated in Figure 5, SEELE achieves significant improvement ranging from 7.6% to 16.8%, especially in the most challenging set where the number of arguments is four or even more. Compared with the previous best TabEAE that models the event correlation via table generation, SEELE proves more effective in accurately extracting multiple arguments of the same role via fine-grained contrastive learning.

Ablation Study. We investigate the effectiveness of all key components in SEELE by removing each in turn. (1) Intra-event Attention (Intra), the transformer layer directly performs interaction among event-aware tokens from different events without intra-event attention. (2) Inter-event Attention (Inter), we only model the interactions of event-aware tokens within the same event. (3) Token Discarding (TD), the potential event-distracting tokens are retained in the intra-event and inter-event attention modules. (4) Contrastive Learning (CL), we drop the contrastive learning in the training phase. (5) Schema-aware Description (SD). We remove all components related to the schema-aware descriptions.

Table 7 demonstrates the ablation experiments. We summarize the following observations: (1) Intra-event and inter-event attention modules have a vital effect on all the benchmarks, especially on ChFinAnn, where arguments-scattering issue widely exists. (2) The irrelevant token discarding module improves the performance by 0.9% to 1.8% on the five benchmarks. The results indicate that the irrelevant information in the context indeed influences the model’s performance. (3) Significant impact lies in fine-grained span-level contrastive learning, and its absence results in a noticeable decrease in both trigger extraction and argument extraction, particularly on RAMS and WikiEvents. These benchmarks have more event types and argument roles than others, exacerbating the multi-event challenge. It demonstrates the significance of fine-grained contrastive learning, which aligns the unstructured documents with structured schema to enhance semantic discrimination of various events. (4) Removing all components related to the event description further causes a significant decline. It indicates the superiority of the SEELE, taking full advantage of the schema knowledge to boost the model’s performance in complicated DEE scenarios.

5 Conclusion

In this work, we propose a new JDEE paradigm that incorporates schema-aware descriptions into DEE. We devise a novel description-guided attention mechanism and fine-grained contrastive learning, which mitigates two critical challenges of DEE. Extensive experiments on five benchmarks demonstrate the state-of-the-art performance and generalization ability of our method in various scenarios.
Acknowledgments

We thank the reviewers for their insightful comments. This work was supported by National Science Foundation of China (Grant Nos.62376057) and the Start-up Research Fund of Southeast University (RF1028623234). All opinions are of the authors and do not reflect the view of sponsors.

References

[Han et al., 2022] Cuiyun Han, Jinchuan Zhang, Xinyu Li, Guojin Xu, Weihua Peng, and Zengfeng Zeng. Due-fin: A large-scale dataset for document-level event extraction. In CCF International Conference on Natural Language Processing and Chinese Computing, 2022.

[Lu et al., 2016] Di Lu, Clare Voss, Fangbo Tao, Xiang Ren, Rachel Guan, Restyslav Korolov, Tongtao Zhang, Donggang Wang, Hongzhi Li, Taylor Cassidy, Heng Ji, Shihfu Chang, Jiawei Han, William Wallace, James Hendler, Mei Si, and Lance Kaplan. Cross-media event extraction and recommendation. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, 2016.

