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Abstract
With the continuous growth of large Knowledge
Graphs (KGs), extractive KG summarization be-
comes a trending task. Aiming at distilling a com-
pact subgraph with condensed information, it facil-
itates various downstream KG-based tasks. In this
survey paper, we are among the first to provide a
systematic overview of its applications and define a
taxonomy for existing methods from its interdisci-
plinary studies. Future directions are also laid out
based on our extensive and comparative review.

1 Introduction
Knowledge Graph (KG) has been a popular knowledge rep-
resentation [Hogan et al., 2022]. In this graph data model,
as illustrated in Figure 1, nodes represent entities of interest,
which are often annotated with types and attributes, and edges
represent typed relations between entities; attributes and rela-
tions are collectively called properties. KGs have been widely
employed in various AI systems and application fields [Peng
et al., 2023], such as question answering [Yang et al., 2017]
and machine translation [Zhao et al., 2020]. With the emer-
gence of large language models (LLMs), KGs have exhibited
increased importance as they can also be used for training and
augmenting LLMs [Pan et al., 2023].
Motivation of KG Summarization. Given numerous KGs
available on the Web, the effective discovery and selection of
suitable KGs for reuse has become a challenge for humans
since KGs are often large and cover a variety of topics. Such
magnitude and diversity also hinder machines from efficient
processing in AI systems. To tackle this problem, a straight-
forward idea is to generate a succinct description for a given
KG to indicate its coverage or reflect its main content. Such a
size-reduced representation containing concise, meaningful,
and faithfully represented information from the original KG
is referred to as a summary of the KG [Cebiric et al., 2019].
Scope of the Survey. KG summarization is distinguished
from summarizing conventional homogeneous graphs such
as the Web graph and social networks [Liu et al., 2018] by
the different types of entities and relations in a KG. Accord-
ingly, grouping-based methods for KG summarization merge
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Figure 1: A small KG as our running example.

entities having similar types and properties into super-nodes
connected by super-edges representing relations between en-
tities in the super-nodes. Such methods have been covered in
previous surveys [Cebiric et al., 2019; Scherp et al., 2023]. In
parallel, extractive methods select an optimal subgraph from
a given KG as its extractive summary. This type of KG sum-
mary, a.k.a. KG snippet, faithfully exemplifies the content of
the original KG, and can be effortlessly comprehended by hu-
mans and directly processed by machines in the same man-
ner as the original KG. For these advantages, extractive KG
summarization has attracted considerable research attention
from interdisciplinary areas related to AI and big data, and
has been used in KG profiling [Ellefi et al., 2018], query opti-
mization [Heling and Acosta, 2023], search [Chapman et al.,
2020], exploration [Lissandrini et al., 2022], and many other
KG-driven applications. However, to the best of our knowl-
edge, this is the first survey paper on extractive KG summa-
rization, providing a comprehensive overview of its applica-
tions, approaches, evaluation, and future research directions.

Outline. We broadly divide extractive KG summaries into
two categories: static summaries are context-independent and
always the same for a given KG; dynamic summaries are cus-
tomized according to the user’s information needs. They are
generated for different applications (Section 3), by different
methods (Sections 4 and 5), and are evaluated in different
ways (Section 6). We present a taxonomy of existing methods
in Figure 2. To demarcate this survey, we firstly distinguish
extractive KG summarization from related tasks (Section 2).
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2 Related Work
Our work differs from the following surveys on research
problems that are related to extractive KG summarization.

Liu et al. [2018] reviewed a wide range of methods for
graph summarization, but they focused mostly on homoge-
neous graphs rather than KGs where nodes and edges may
be labeled with different types. For labeled graphs, their
survey covered grouping-based but not extractive methods,
which represent two distinct paradigms of summarization.
Previous surveys on KG summarization [Cebiric et al., 2019;
Scherp et al., 2023] also gave primary attention to grouping-
based methods, based on the concept of quotients in partic-
ular. Since a grouping-based summary can be viewed as an
implicit schema discovered from the KG, the task is also re-
ferred to as schema discovery [Kellou-Menouer et al., 2022].

Entity summarization selects a subset of properties for
each given entity in a KG [Liu et al., 2021]. An entity sum-
mary can be viewed as a special type of extractive KG sum-
mary that is restricted to the neighborhood of a particular
node. Such locality distinguishes entity summarization from
the methods for extractive KG summarization covered in this
survey which globally take the entire KG into consideration.

Ontology summarization extracts core concepts or a sub-
ontology from a given ontology. Existing methods mainly
represent an ontology as a graph to be summarized [Pouriyeh
et al., 2019]. Some of these graph representations resemble
a KG but are at the schema level where nodes are classes
instead of entities. Accordingly, the optimization objective
of ontology summarization differs significantly from those of
extractive KG summarization reviewed in this survey.

3 Applications of Extractive KG Summaries
Extractive KG summarization has proved to be useful for a
variety of KG-based applications. Static and dynamic KG
summaries are needed for supporting different tasks.

3.1 Applications of Static KG Summaries
Static summaries are context-independent and are extracted
to capture the intrinsic characteristics of a KG, e.g., to reflect
its main content, or to indicate its coverage. They have found
application in KG profiling and query optimization.

KG Profiling
A KG profile is a formal representation of a set of features
of a given KG, which is often used to aid KG discovery, rec-
ommendation, and comparison [Ellefi et al., 2018]. An ex-
tractive KG summary that contains representative entities in
the original KG is one such feature understood as a sample
that accurately portrays the whole KG. It has been used in
KG search engines to exemplify the content of a KG getting
clicked on in the search results [Wang et al., 2022], aiding
the user in quickly filtering relevant KGs without expensively
accessing the original, potentially large KGs.

KG Query Optimization
An extractive KG summary can be regarded as a view of a
given KG and queried in the same manner [Fan et al., 2014;
Wang, 2017; Li et al., 2016]. A common application of such
views is federated KG query optimization [Montoya et al.,

Figure 2: A taxonomy of methods for extractive KG summarization.

2017] where multiple KGs are jointly queried, and the perfor-
mance relies on the efficiency of the query plan, e.g., the es-
timation of join cardinalities for sub-queries. Extractive KG
summaries have been used to compute accurate estimations of
this kind using less time than the complete statistics derived
from the original large KGs [Heling and Acosta, 2023].

3.2 Applications of Dynamic KG Summaries
Dynamic summaries are customized and are extracted to sat-
isfy each user’s individual information needs, e.g., to show
the relevance of a KG to a user’s query, or to tailor the con-
tent of a KG to users’ specific interests.

KG Search
KG search engines have become an important tool for finding
open KGs for reuse [Chapman et al., 2020]. Whereas early
implementations rely on metadata descriptions to discover
KGs and assist user judgment of their relevance, metadata
has proved to be insufficient due to its quality and availabil-
ity [Koesten et al., 2017]. Complementary to metadata, var-
ious types of KG summaries have been extracted to enhance
search: summaries that are centered on keyword matches to
help judge the relevance of search results [Chen et al., 2019;
Wang et al., 2022], and compact summaries that can be fed
into a dense re-ranking model (which cannot accept a whole
large KG) to improve search accuracy [Chen et al., 2023].

KG Exploration
KG exploration refers to the process that gradually discovers
and understands the content of a large and unfamiliar KG, of-
ten starting by means of a keyword query asking for matched
nodes, edges, or subgraphs [Lissandrini et al., 2022]. The
matched relevant insights, as an extractive KG summary, can
assist in a number of downstream tasks on this KG, such as
the identification of its portions that can satisfy the current
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information needs, the comprehension of its graph structure,
and the formulation of formal (e.g., SPARQL) queries on it.

KG Reuse
KGs such as Wikidata [Vrandecic and Krötzsch, 2014] are
huge and cover a wide variety of topics. For a specific ap-
plication, it is often sufficient to only extract a relevant por-
tion to be reused. For example, a personalized KG summary
containing the subgraph most relevant to an individual user’s
interests has been extracted so that it can be stored and ac-
cessed on resource-constrained devices [Safavi et al., 2019;
Vassiliou et al., 2023]. Minimal domain-specific KG sum-
maries have been extracted to reduce the computation with-
out compromising the accuracy of domain-specific applica-
tions [Lalithsena et al., 2016; Lalithsena et al., 2017]. An-
other interesting application is to enrich a news article with
a relevant KG summary extracted from a background KG
to help the reader comprehend the relations between entities
mentioned in the news [Huang et al., 2019; Li et al., 2020].

4 Extraction of Static KG Summaries
Static summaries are extracted to reflect the coverage of the
original KG. Depending on the application, existing methods
cover different targets: data patterns, or query answers.

4.1 Pattern Coverage-Based Summarization
Entities in KGs are assigned different types, i.e., classes, and
they are described using different properties. Extracting a
summary that exemplifies the most representative data pat-
terns for describing the entities in a KG is an important com-
ponent of KG profiling [Ellefi et al., 2018]. Existing methods
in this category have been focused on extracting summaries
that cover data patterns at different granularities, from inde-
pendent instantiations of classes and properties to their joint
instantiations associated with graph structure. Figure 3 out-
lines the expressivity increases among different data patterns.

Figure 3: Expressivity increases among data patterns.

Class & Property
Class and property instantiations are the most elementary
data patterns in a KG, such as the instances of the class
Person and the property nationality in Figure 1. To
exemplify all such instantiations during KG visualization, the
3-S approach [Sundara et al., 2010] performs stratified sam-
pling by uniformly sampling the instances of each class and
each property independently. However, this method is only
suitable for KGs that have a small schema.

Given a potentially large number of classes and properties
used in a KG, the IlluSnip approach [Cheng et al., 2017a]
extracts a size-bounded connected subgraph that contains the
most frequently instantiated classes and properties, as well
as entities having the highest PageRank scores, to illustrate

the main content of the KG. For example, the summary in
Figure 4 includes Person and act in which are the most
frequently instantiated class and property in Figure 1, re-
spectively. To fulfill this, a Maximum-weight-and-coverage
Connected Graph problem (MwcCG) is formulated, and is
solved by a greedy approximation algorithm for this new NP-
hard optimization problem, where coverage and weights are
jointly maximized to account for class/property instantiations
and entity scores, respectively.

Titanic (1977 film)
type: Film James Cameron

act_in directed_byKate Winslet
type: Person
birthdate: “5-10-1975”

Figure 4: A summary extracted from Figure 1 containing the most
frequently instantiated class Person and property act in.

As a follow-up effort, Liu et al. [2019] design more ef-
ficient algorithms for MwcCG and adapt them to SPARQL
endpoints for summarizing remotely accessed KGs.

Characteristic Set
On top of individual properties, the characteristic set [Heling
and Acosta, 2020] of an entity is the set of all properties
(including type) describing that entity in a KG, and each
property can be associated with its average frequency of
occurrence among all the entities having this characteris-
tic set (i.e., average multiplicity). For example, the char-
acteristic set of James Cameron in Figure 1 consists of
{nationality, type}. All the characteristic sets instan-
tiated in a KG, the number of entities having each characteris-
tic set, and the average frequency of each property constitute
a statistical profile of the KG which is required by a query
optimizer for devising efficient query plans. When it is diffi-
cult to access or process the entire KG, Heling et al. [2020;
2023] use estimations for this profile derived from a KG
summary containing the properties of a set of selected enti-
ties. Entities that have high outdegrees (i.e., rich descriptions)
have a high chance of being selected.

Entity Description Pattern
In addition to the properties (i.e., outgoing edges) in a char-
acteristic set, the Entity Description Pattern (EDP) [Wang
et al., 2021] of an entity distinguishes its types from other
properties and, further, includes the properties that have this
entity as a value (i.e., incoming edges). For example, Fig-
ure 5 shows E1, the EDP of two entities Kate Winslet
and Leonardo DiCaprio in Figure 1, and E2, the EDP
of Titanic (1977 film) and Avatar: The Way
of Water. To extract a summary of a KG to exem-
plify all or the most frequent EDPs, the two-step PCSG
approach [Wang et al., 2021], in its first step, selects the
minimum number of connected components that collectively
cover those EDPs by formulating and solving a Set Cover
problem. In the second step, it extracts an optimal subgraph
from each selected connected component and merges these
subgraphs. Specifically, the subgraph is a tree found by solv-
ing a minimum-size Group Steiner Tree problem [Ihler, 1991]
where all the entities having the same EDP form a group. The
extracted minimal tree is required to cover all the groups, i.e.,
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contain at least one entity for each EDP; the types and prop-
erties of this entity are then extracted to exemplify its EDP.

directed_byact_intype: Person
birthdate:

act_in

nationality E1 E2
act_in

E1                                                       E2                                                        L                                       

type: Film

Figure 5: Two EDPs (E1, E2) and an LP (L) in Figure 1.

Link Pattern
Building on EDPs, Link Pattern (LP) [Wang et al., 2021]
takes a further step to characterize not only the neighbor-
hood pattern of each individual entity, but also the patterns
of relations between entities. Specifically, the LP of a re-
lation between two entities is a triple consisting of the re-
lation type and the EDPs of the two entities. For example,
Figure 5 shows an LP shared by the three act in relations
in Figure 1. To extract a KG summary that also exempli-
fies all or the most frequent LPs, the aforementioned PCSG
approach [Wang et al., 2021] extends the formulation of the
Group Steiner Tree problem by performing edge subdivision
to convert each relation into a node; all the relations having
the same LP form a group to be covered by the extracted min-
imal tree. For example, the summary in Figure 6 exemplifies
the two EDPs and the LP in Figure 5. Note that the EDPs of
the entities James Cameron and UK are not fully exempli-
fied in this summary.

Titanic (1977 film)
type: Film James Cameron

act_in directed_by

nationality

Kate Winslet
type: Person
birthdate: “5-10-1975”

UK

Figure 6: A summary extracted from Figure 1 exemplifying the two
EDPs and the LP in Figure 5.

Path Pattern
Going beyond link patterns that focus on the direct connec-
tion patterns between adjacent entities, the more generalized
path pattern [Mynarz et al., 2016] addresses both direct and
indirect connections between entities. It is an alternating se-
quence of classes and properties, derived from the paths in
a KG where each entity is replaced by a type assigned to it.
For example, Figure 7 shows the most frequent path pattern
of length two in Figure 1. To present typical patterns for user
comprehension, for each frequent path pattern in a KG, My-
narz et al. [2016] extract a set of diverse and representative
instance paths. Diversification is achieved by choosing en-
tities described using different properties, and representative
entities are found by clustering entities having similar prop-
erties and then choosing from the medoids of the clusters.

directed_byact_in
type: Directortype: Filmtype: Person

Figure 7: A path pattern in Figure 1.

Remarks. An extractive summary aiming at covering data
patterns at a low granularity such as class and property in-
stantiations is able to concisely exemplify the content of a
KG. However, higher-order structural patterns like EDPs pro-
vide more accurate characterization, accompanied with in-
creased computational complexity and also redundancy, e.g.,
two EDPs may differ insignificantly by only one property.
This trade-off is to be considered by the concrete application.

4.2 Answer Coverage-Based Summarization
Replacing a large KG with an extracted compact summary
to be queried helps improve query performance [Fan et al.,
2014]. Existing methods in this category are targeted at max-
imizing a summary’s coverage of query answers [Rietveld et
al., 2014] or its preservation of statistic features of data dis-
tribution in the original KG [Montoya et al., 2017]. The latter
is important to federated query optimization, for which some
methods reviewed in Section 4.1 perform a biased sampling
of entities according to their outdegrees [Heling and Acosta,
2020; Heling and Acosta, 2023], which is a common mea-
sure of node centrality in graphs. Below we will see other
centrality measures and the utilization of query logs.

Graph Structure
Without relying on prior knowledge of queries, the SampLD
approach [Rietveld et al., 2014] attempts to purely employ
graph topology to predict the relevance of edges for typical
queries. Assuming that structurally central entities are likely
to be included in common query answers, this approach ex-
tracts edges that are incident with the most central nodes in
a KG. Three graph centrality measures are applied and com-
pared: PageRank, indegree, and outdegree. For example, if
indegree is used, the edge between James Cameron and
Titanic (1977 film) in Figure 1 will be ranked high
since these two nodes have the largest indegree in the KG.

Query Log
Besides graph centrality, it would be reasonable to assume
that entities and properties that occur frequently in past
queries or in the results of past queries are important and are
likely to be included in the answers of future queries. For
example, if the entity BBC in Figure 1 is frequently queried
according to the query log, it will have a high priority to be
included in the summary despite its relatively small indegree
and outdegree in the KG. Guo et al. [2021] incorporate this
idea and propose a hybrid approach that takes into account
both graph structure and query log. They measure the impor-
tance of an edge by a combination of graph centrality (i.e.,
the indegree and outdegree of its endpoints) and query fre-
quency (i.e., the frequency of co-occurrence of its endpoints
in the query log). Node importance is measured in an analo-
gous manner. Finally. top-ranked edges that are incident with
top-ranked nodes are extracted to form a summary.

Remarks. Graph structure and query log are complemen-
tary to each other. Whereas observed query frequency repre-
sents an effective indicator for the likelihood of being queried
in the future, when query log is not available, graph centrality
could be used as a reasonable estimation for substitution.
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5 Extraction of Dynamic KG Summaries
Dynamic summaries are extracted to tailor a KG to users’
needs. Existing methods consider needs expressed in differ-
ent manners: keyword queries, or personal interests.

5.1 Query-Biased Summarization
Snippet generation for KG search [Chen et al., 2019] and
query-based KG exploration [Lissandrini et al., 2022] can
both be formulated as extracting a query-biased subgraph
from a given KG. Early methods in this category solve it as
a node/edge ranking problem. Recently, various formulations
in combinatorial optimization have been adopted, in particu-
lar based on Group Steiner Trees for reflecting connections
among query keywords in the graph structure. Not limited to
maximizing the coverage of query keywords, they consider
answer compactness (i.e., small subgraph) and cohesiveness
(i.e., semantically related entities). Figure 8 outlines the ex-
pressivity increases among different problem formulations.

Figure 8: Expressivity increases among problem formulations for
query-biased extractive KG summarization.

Early Heuristics
To acquaint the user with a KG in the context of keyword
search, in an early work, Bai et al. [2008] extract two sub-
graphs: a topic-oriented subgraph for revealing the main
topic of the KG, and a query-oriented subgraph for show-
ing its relevance to the query. The topic-oriented subgraph
is extracted from the neighborhood of a topic entity based on
predefined priorities of its properties; the topic entity is one
that has a large indegree and outdegree. The query-oriented
subgraph contain edges matched with query keywords; prior-
ity goes first to the edges incident with the topic entity.

Maximum Coverage
Instead of separately considering data representativeness and
query relevance in two subgraphs, the KSD approach [Wang
et al., 2019] jointly maximizes the coverage of all such el-
ements of interest. Specifically, the elements of a KG that
a summary is expected to cover include class and property
instantiations, central entities, and keyword matches. To
achieve it, a weighted Maximum Coverage problem is formu-
lated, where each edge (or type/attribute assertion) is repre-
sented as a set that may cover a class instantiation, a property
instantiation, one or two entities, and/or a number of query
keywords. Each class and property to be covered is weighted
by its frequency in the KG. Each entity to be covered is as-
signed a weight measuring its graph centrality based on in-
degree and outdegree. Solving this problem gives rise to a
size-bounded optimum subgraph that maximizes the cover-
age of representative and query-biased data elements of the
KG. As illustrated in Figure 9, the summary extracted by this
approach is comparable with the summary extracted by Il-
luSnip shown in Figure 4. Given a keyword query Titanic

Titanic (1977 film)
type: Film

US
type: CountryLeonardo DiCaprio

act_inKate Winslet
type: Person

nationality

Figure 9: A summary extracted from Figure 1 containing the most
frequently instantiated class Person and property act in, and
containing the query keywords Titanic and US.

US, whereas both summaries include the most frequently in-
stantiated class Person and property act in in Figure 1,
the summary here further includes the entity US to match the
query, although it is not required to be a connected subgraph.

Group Steiner Tree
Independent coverage of KG elements will easily produce
a summary composed of multiple disconnected fragments.
This weakens the structural cohesiveness of the summary, and
misses the connections between keyword matches in the KG,
which could be important to the user’s judgment of query rel-
evance. To overcome this limitation, a recent line of research
formulates and solves a minimum-weight Group Steiner Tree
(GST) problem [Ihler, 1991]. The KeyKG approach [Shi et
al., 2020] maps each query keyword to a group of entities, and
the target is a minimum-weight tree that covers all the groups,
i.e., contains at least one matched entity for each keyword.
Edge weights can be defined by an off-the-shelf method de-
pending on the application. The resulting tree concisely re-
flects a structural relationship among all the query keywords.
For example, given a keyword query Titanic US, the summary
in Figure 10 includes a path that connects the two query key-
words. Considering the NP-hardness of this problem, KeyKG
features a new approximation algorithm that employs an of-
fline computed distance index to accelerate online extraction
of shortest paths between groups to be merged into a tree.

Titanic (1977 film) USJames Cameron
directed_by nationality

Figure 10: A summary extracted from Figure 1 containing a path
that connects the query keywords Titanic and US.

The aforementioned PCSG approach incorporates KeyKG
as an efficient solver of the GST problem. Moreover, PCSG
has been extended to QPCSG [Wang et al., 2021], which cov-
ers EDPs, LPs, and also query keywords. All the entities and
relations matched with a query keyword form a group to be
covered. As illustrated in Figure 11, given a keyword query
Titanic US, the summary extracted by this extended approach
further includes the entity US to match the query, extending
the summary in Figure 6 extracted by PCSG.

Titanic (1977 film)
type: Film

US

James Cameron
type: Director
type: Person

act_in directed_by

nationalitynationality

Kate Winslet
type: Person
birthdate: “5-10-1975”

UK

Figure 11: A summary extracted from Figure 1 exemplifying the two
EDPs and the LP in Figure 5, and containing the query keywords
Titanic and US.
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Diameter-Bounded Max-Coverage Group Steiner Tree
The standard GST problem requires the extracted tree to
cover all the groups, but this is not always achievable in prac-
tice. For example, given a KG that is a disconnected graph, a
tree that connects all the keywords in a query may not exist.
Even for a connected graph, a large tree may have to be ex-
tracted to cover keywords that are distant from each other in
the graph structure, against the goal of extracting a compact
summary. To achieve a trade-off between query coverage and
structural compactness, Cheng et al. [2020] propose to allow
relaxing a query by ignoring a minimum number of keywords
to guarantee the compactness of the extracted summary.

As a generalization of this idea, Zhang et al. [2023] formu-
late a Diameter-bounded max-Coverage Group Steiner Tree
(DCGST) problem. Compared with a standard GST, DCGST
has a bounded diameter and is required to cover not neces-
sarily all but the most possible groups. For example, given
a keyword query Titanic US talking over Figure 1 and a di-
ameter bound of two hops, the summary extracted here has
to ignore the keyword talking but choose to be concisely fo-
cused on the connection between the other two keywords, as
illustrated in Figure 10. By contrast, the summary extracted
by the aforementioned KeyKG approach is a standard GST
consisting of a long and unfocused path, as shown in Fig-
ure 12, although it covers all the three keywords. The DCGST
problem is an emerging NP-hard optimization problem and is
solved by PrunedCBA [Zhang et al., 2023], an approxima-
tion algorithm performing pruned best-first search based on a
novel hop-bounded index of precomputed distances.

Titanic (1977 film) USJames Cameron

BBC Talking Movies
act_in

directed_by nationality

nationality
Kate Winslet UK

produced_byfounded _in

Figure 12: A summary extracted from Figure 1 containing a long
path that connects the query keywords Titanic, US, and talking.

Quadratic Group Steiner Tree
Another extension of the GST formulation for query-biased
KG summarization considers the semantic cohesiveness of
the extracted tree [Cheng and Kharlamov, 2017]. Recall that
the standard minimum-weight GST problem optimizes the to-
tal weight of the extracted nodes or edges, where weights re-
flect (inverse) salience. However, a set of salient nodes or
edges may not always comprise a meaningful connection as
a whole. It can be a semantically disjointed tree that connects
a set of salient but disparate entities. To improve semantic
cohesiveness, Shi et al. [2021a; 2021b] incorporate the mini-
mization of semantic distances between extracted entities into
the objective function. They formulate a more generalized
Quadratic Group Steiner Tree (QGST) problem. Compared
with a standard GST, QGST minimizes a linear combination
of the sum of weights of its nodes and the sum of quadratic
weights of its node pairs. Quadratic weight characterizes the
semantic distance between a pair of entities, e.g., the angu-
lar distance between their embedding vectors. The extracted
summary tends to include entities that are not only salient
by themselves and matched with the query, but also seman-
tically close to each other, hence forming a semantically co-

hesive whole. For example, given a keyword query Avatar
DiCaprio, the top tree in Figure 13 contains salient entities
like US but also disparate entities including a film, a director,
a country, and an actor. By contrast, the entities in the bottom
tree are a set of closely related films and actors, representing
a more meaningful connection. To solve the QGST problem
which is an NP-hard optimization problem, B3F [Shi et al.,
2021b] is an exact algorithm that performs branch-and-bound
best-first search. QO and EO [Shi et al., 2021a] are two ap-
proximation algorithms with the idea of finding and merging
small-weight paths from a root node to all the groups.

USJames Cameron Leonardo DiCaprio
nationalityAvatar: The 

Way of Water
directed_by nationality

Titanic (1977 film) Leonardo DiCaprio
act_in

Kate Winslet
Avatar: The 
Way of Water

act_inact_in

Figure 13: Two summaries extracted from Figure 1 containing the
query keywords Avatar and DiCaprio.

Remarks. Compared with maximum coverage, GST-based
formulations are expressive but hard to solve. Although
KeyKG and PrunedCBA perform satisfyingly on large KGs
with millions of nodes, they rely on a precomputed distance
index which needs to be rebuilt when the KG evolves. For the
QGST problem, no algorithm so far could respond to a query
over a million-scale KG in real time. All these limitations
should be taken into account when choosing the formulation.

5.2 Personalized Summarization
Besides keyword queries, users’ interests can be explicitly ex-
pressed or implicitly discovered in various manners. Serving
the user with a personalized summary extracted from a large
KG provides cost-effectiveness in KG reuse [Safavi et al.,
2019; Vassiliou et al., 2023]. Existing methods in this cat-
egory tailor KGs to a user’s needs in different forms: a single
entity of interest, a class representing a domain or a set of
entities specified by the user, or the user’s own query history.

Single Entity
The iSummary approach [Vassiliou et al., 2023] allows the
user to specify an entity of interest in the KG as a seed entity,
such as James Cameron, and it extracts a summary that
compactly describes this entity as well as a set of its closely
related entities. Specifically, each entity in the KG is assigned
a weight. An entity with a higher frequency of co-occurrence
with the seed entity in the query log has a higher weight. This
frequency is believed to reflect the relatedness between enti-
ties. From the resulting node-weighted graph, a maximum-
weight tree that connects the seed entity with its most related
entities is extracted. This computational problem resembles
the minimum-weight Steiner Tree problem and is NP-hard. It
is solved by an approximation algorithm that extracts shortest
paths to connect the seed entity with its most related entities.

Multiple Entities (in a Domain)
A user may also want to extract a domain-specific summary
from a large KG. A domain of interest can be represented by a
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set of in-domain entities, e.g., all the entities having a particu-
lar type such as Film in Figure 1. To fulfill this need, Lalith-
sena et al. [2016] traverse the KG starting from in-domain
entities to extract domain-specific edges. Their primary focus
is to determine the domain specificity score of each relation
type, and they present two measures. The first measure uti-
lizes the strength of association among the types of relations
and intermediate entities derived from instance-level frequen-
cies. The second and more effective measure relies on the
domain specificity of intermediate relations and adopts Point-
wise Mutual Information for measuring association.

In a follow-up work, Lalithsena et al. [2017] further em-
ploy the Wikipedia categories of each entity and restrict graph
traversal to the entities in the top-ranked domain-specific cat-
egories. To determine the domain specificity score of a cat-
egory, they collect evidences from the types of the entities
in the category, its lexical label, and its structural abstract-
ness characterized by its outdegree in the category hierarchy.
Evidences are aggregated for ranking categories using Proba-
bilistic Soft Logic, a statistical relational learning framework.

Instead of graph traversal, Jiang et al. [2012] firstly mine
the frequent subgraph patterns in a KG, and extract their in-
stance subgraphs that contain user-specified entities. These
subgraphs are merged by intersection or union into a single
graph, where each edge is weighted based on a combination
of the frequencies of its constituent entities and relation type.
Finally, a minimum-weight Steiner Tree that connects all the
user-specified entities is extracted from this graph as a sum-
mary of the semantic associations among those entities.

Here we would like to distinguish the approaches in this
category from the research on relationship search [Cheng,
2020], i.e., searching and ranking subgraphs that connect a
given set of input entities [Cheng et al., 2017b]. Their main
difference is that the approaches here extract and summarize
all the subgraphs relevant to the input entities, whereas rela-
tionship search is only focused on finding a few top-ranked
subgraphs to be presented as search results.

Query History
When a user’s personal query history is available, the
GLIMPSE approach [Safavi et al., 2019] extracts a person-
alized summary from a KG containing only a subgraph most
relevant to the user’s interest reflected in past queries. To
this end, entities and relations are scored by a probabilistic
framework estimated from their frequencies observed in the
user’s query history. The extraction of a size-bounded opti-
mum subgraph is formulated as an optimization problem with
a submodular objective function, hence featuring a greedy
constant-factor approximation algorithm.
Remarks. Despite the diverse forms of expressing a user’s
needs, it is possible to convert them into each other to be han-
dled in a consistent manner. For example, from a user’s query
history, a set of frequent entities can be mined, which, in turn,
can be processed separately as single entities.

6 Evaluation of Extractive KG Summaries
Considering the magnitude of a KG, it is difficult—if not
impossible—to manually extract a summary as the gold stan-
dard for evaluation. Instead, depending on the application,

various quality metrics have been used to quantitatively as-
sess the quality of a summary from different perspectives. For
example, Wang et al. [2023] devise an evaluation framework
for measuring a summary’s coverage of the classes, proper-
ties, EDPs, and LPs in the original KG. They also publish
a benchmark called BANDAR with thousands of real-world
KGs to be used for evaluation. Cheng et al. [2017a] conduct
a user study, inviting human users to rate and compare the
quality of the summaries extracted by different approaches.

As to task-specific summaries, extrinsic evaluation aims to
assess the quality of a summary indirectly by testing its per-
formance in downstream tasks using the summary. For ex-
ample, Rietveld et al. [2014] and Guo et al. [2021] measure
a summary’s coverage of query answers by comparing the
results retrieved from the summary with the correct results
retrieved from the original KG. Wang et al. [2021] conduct
a user study to compare the usefulness of the summaries ex-
tracted by different approaches for assisting users in compre-
hending a large KG and then completing complex SPARQL
queries over the KG. Useful summaries are expected to help
complete SPARQL queries correctly and also quickly.

Besides, the time for extracting a summary is an important
factor in evaluating the practicability of an algorithm, espe-
cially for real-time applications such as KG search engines.

7 Conclusion and Future Directions
We have systematically reviewed existing applications, ap-
proaches, and evaluation methods for extractive KG summa-
rization. This interdisciplinary research topic spanning artifi-
cial intelligence, data mining, and information retrieval pro-
vides increasing research opportunities. We highlight the fol-
lowing research directions that are currently underexplored.
Neural Extraction. While existing approaches mainly ex-
ploit the symbolic features of KGs (e.g., ontological schema,
graph structure), there is much room for exploring neural
methods, given the rapid advances in deep learning models
in recent years, particularly graph neural networks.
Supervised Extraction. Although unsupervised extraction
has become mainstream to KG summarization, supervised
methods deserve to be taken into consideration. The inade-
quacy of labeled data for training could be addressed by semi-
supervised learning such as self-training and co-training.
Generative Extraction. Extractive summaries may also be
obtained using a generative model. Motivated by the recent
success in generative information extraction and retrieval, it
would be an interesting investigation to apply pretrained gen-
erative models to KG summary extraction.
Comparative Extraction. When multiple KGs need to be
summarized and compared, e.g., in the results page of a KG
search engine, the extraction of their summaries should not be
independent but can be performed jointly, attending to their
common and distinctive features to facilitate user’s selection.
Collaborative Extraction. Given the computational cost of
processing a large KG, we anticipate a scenario where sum-
maries are extracted not from scratch but building on stored
summaries previously extracted for similar tasks, which can
be inexpensively assembled and tailored to new needs.
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