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Abstract

This overview accompanies the author’s Early Ca-
reer Track presentation. We survey recent research
and research agenda of the author, focusing on con-
tributions in the area of computational argumenta-
tion. Contributions span from foundations of static
and dynamic forms of argumentative reasoning and
approaches to support explainability, e.g., analysis
of the computational complexity of argumentative
reasoning and algorithmic approaches.

1 Introduction
Computational argumentation provides foundational ap-
proaches how to represent and reason with arguments within
the broader field of Artificial Intelligence (AI) [Baroni et al.,
2018; Gabbay et al., 2021]. Nowadays, computational argu-
mentation finds heterogeneous application areas such as in le-
gal reasoning and medical reasoning [Atkinson et al., 2017],
e.g., in the form of supporting fraud detection at the Dutch
National Police [Odekerken et al., 2020].

Among the aims of computational argumentation are sup-
porting decision-making, explainability, and automated rea-
soning. Central to these are formal approaches to argu-
mentative reasoning, which are oftentimes classified into
structured [Besnard et al., 2014] and abstract argumenta-
tion [Dung, 1995]. The former prescribes formalized work-
flows [Caminada and Amgoud, 2007], or processes, that spec-
ify how to carry out argumentation (Figure 1). Conceptu-
ally, from a conflicting and possibly incomplete knowledge
base arguments are constructed, which can, e.g., be deriva-
tions based on defeasible rules and assumptions. Relations
connect arguments together, with an attacking relation be-
ing the most prominent one, yet several other notions, e.g.,
support relations, have been considered as well [Brewka et
al., 2014]. Abstracting the content of arguments and look-
ing only at the abstracted arguments and their relations is the
topic of abstract argumentation. In this field several argu-
mentation semantics exist [Baroni et al., 2011], which are
criteria specifying which (sets of) arguments can be deemed
acceptable together. As an example, a basic ingredient of
checking whether an argument can be accepted is that of be-
ing defended by an admissible set of arguments, which is a

conflict-free set of arguments that defends itself against all
counter-arguments.

Reflecting the heterogeneity of argumentation, many ar-
gumentation formalisms are studied in the field, including
general-purpose structured argumentation formalisms such
as assumption-based argumentation (ABA) [Bondarenko et
al., 1997], ASPIC+ [Modgil and Prakken, 2013], defeasi-
ble logic programming (DeLP) [Garcı́a and Simari, 2004],
deductive argumentation [Besnard and Hunter, 2008], Gor-
gias [Kakas et al., 2019], and Carneades [Gordon et al.,
2007]. For abstract argumentation, argumentation frame-
works (AFs) [Dung, 1995] are the most prominent formal
approach, which were extended in various ways, e.g., allow-
ing general forms of specifying acceptance conditions of ar-
guments in abstract dialectical frameworks (ADFs) [Brewka
and Woltran, 2010; Brewka et al., 2018].

All of these approaches, structured and abstract, share a
high computational complexity of argumentative reasoning:
even checking whether there is an admissible set defending a
queried argument is NP-hard, and many other reasoning tasks
have higher complexity, e.g., are hard for a class in the poly-
nomial hierarchy [Dvořák and Dunne, 2018].

In this paper I give an overview of our research on the topic
of computational argumentation, focusing in particular on the
research agenda of furthering various forms of argumentative
reasoning both from foundational aspects as well as regarding
algorithms and system tools. Naturally, the research outlined
in this paper involves several researchers and research groups.

2 Reasoning in Argumentation Formalisms
Towards algorithmic solutions for reasoning in computational
argumentation, in particular for more advanced forms of ar-
gumentative reasoning, a thorough understanding of the com-
plexity of the tasks to solve is essential. Since even basic rea-
soning tasks in formal argumentation are NP-hard and several
forms of reasoning in this field are hard or complete for a class
in the polynomial hierarchy, algorithm design can signifi-
cantly benefit from understanding the underlying complexity.
Based on state-of-the-art search algorithms for NP-complete
problems, such as SAT(isfiability) solving [Biere et al., 2021]
and answer set programming (ASP) [Gelfond and Lifschitz,
1988; Niemelä, 1999], algorithm design can be tailored to us-
age of, e.g., SAT solvers, as required from the complexity of
the task to solve. For instance, problems complete for ΣP
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Figure 1: The argumentation process [Caminada and Amgoud, 2007].

presumably, not poly-time reducable to one SAT call, yet can
be solved, e.g., via interaction of several SAT sub procedures.

We contributed to understanding the complexity of various
reasoning tasks in computational argumentation. For ADFs
that allow for flexible specification of acceptance condi-
tions for arguments, with applications in legal reasoning [Al-
Abdulkarim et al., 2019], we showed fundamental complex-
ity results for general ADFs [Strass and Wallner, 2015] and
for restricted ADFs [Linsbichler et al., 2022]. Complexity of
reasoning in general ADFs goes up to the third level of the
polynomial hierarchy, and remains NP (or coNP) hard even
for computationally simple argumentation semantics, such as
the grounded semantics. In brief, these results imply that the
complexity of reasoning in ADFs is “one level higher” in the
polynomial hierarchy than reasoning in AFs, for correspond-
ing reasoning tasks. AFs feature the fundamental notion of
directed attacks, while the additional expressivity of general
ADFs comes at a higher computational cost.

To overcome the complexity barrier, we investigated sev-
eral restrictions to ADFs. In so-called bipolar ADFs [Brewka
and Woltran, 2010], acceptance conditions of each argument
in an ADF are restricted, intuitively representing only cer-
tain forms of attacks or supports between arguments. If it is
known which arguments are attacking or supporting, the com-
plexity of bipolar ADFs drops to the level of AFs, thus lead-
ing to a fragment of ADFs with additional representational
expressivity [Strass, 2015], yet without higher complexity.

Going into other directions, we considered restrictions
to the underlying graph structure of ADFs, by considering
acyclic, bipartite, and symmetric graph structures, as well as
certain distance notions to these graph structures (e.g., re-
moval of some arguments suffices to have an acyclic ADF).
While bipartiteness and symmetry does not appear to sup-
port milder forms of reasoning, acyclicity does indeed lead
to milder complexity: many reasoning tasks are decidable in
polynomial time. Yet even with low distances to acyclicity
reasoning is not poly-time decidable.

Algorithm design for ADFs can in particular be utilized by
bipolarity and further semantical restrictions that allow only
a bounded number of interpretations satisfying criteria of a
chosen semantics. Using state-of-the-art SAT solving, algo-
rithms for general ADFs can make use of these complexity
results to restrict usage of SAT solvers, if possible.

In the area of structured argumentation investigations of al-
gorithmic solutions and complexity analysis face an intrinsic
barrier: arguments are not explicitly given, but need to be
constructed. For instance, in Figure 2 the atoms a, b, and c
may be assumed and use derivations by rules x1, . . . , xn →
h, denoted by edges in the figure, e.g., x can be derived from

b in this example. Solid edges and nodes denote “strict com-
ponents” that cannot be attacked, while dashed components
denote defeasible reasoning that may be invalidated by con-
flicts. Each derivation is then an argument, e.g., arguments
A1 to A7 in the figure.

In general structured argumentation, the number of argu-
ments is not bounded and can be infinite [Lehtonen et al.,
2023]. While in many forms of structured argumentation
it is direct to restrict construction to a finite set of argu-
ments, an exponential number of arguments can still be gener-
ated [Strass et al., 2019]. Many instantiation procedures give
rise to exponentially many arguments. We showed that, under
certain complexity assumptions from compilation theory, an
exponential number appears unavoidable in ABA [Lehtonen
et al., 2024]. When imposing certain restrictions, e.g., allow-
ing no assumptions to be derivable for ABA frameworks, a
polynomially sized “core” can be constructed which suffices
to perform reasoning [Lehtonen et al., 2023].

Going into a different direction, we also investigated com-
plexity and algorithms when working on a compact repre-
sentation of arguments, without explication (construction) of
arguments. For the case of ABA such a compact represen-
tation was developed earlier [Cyras et al., 2018], while for
ASPIC+ a novel characterization or representation was re-
quired to be developed. These representations involve, in
brief terms, specifying which part of a given knowledge base
corresponds to, e.g., an admissible set of arguments. Then
computation can focus on “selecting” parts of the knowledge
base and checking whether a correspondence holds.

Together with earlier results, compact representations al-
lowed to analyze complexity of argumentative reasoning in
ABA and ASPIC+, without requiring construction of (po-
tentially exponentially many) arguments. The results indi-
cate that complexity in many cases is the same as for AFs,
i.e., complexity results give here a clear indication that expo-
nentially many arguments are not needed to be constructed
for reasoning, although at the potential disadvantage of not
having explicit arguments to show to a user. For the case of
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Figure 2: Example rule base in ASPIC+.
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Figure 3: Enforcing d to be accepted under grounded semantics.

preferential argumentative reasoning, which is seen as key to
computational argumentation, complexity rises again under
certain chosen types of preferences [Lehtonen et al., 2021;
Lehtonen et al., 2022].

Algorithms we developed for both ABA and ASPIC+ rely
on SAT and ASP solving [Lehtonen et al., 2021; Lehtonen
et al., 2020; Lehtonen et al., 2023]. In experiments, algo-
rithms operating on compact representations of arguments
were shown to be the current state of the art in terms of
runtime performance. However, having explicit arguments
turned out to be beneficial in cases, in particular those with
certain language features that lead to more involved checks in
compact representations, while on explicated arguments are
more direct to compute [Lehtonen et al., 2024].

For the area of solving reasoning tasks on different argu-
mentation formalisms, we think more research is needed. We
believe that in particular (i) preferential reasoning, (ii) opti-
mized argument construction procedures, and (iii) extending
language features that can be solved are promising directions
for future research.

3 Dynamics in Argumentative Reasoning
Argumentative reasoning is, naturally, not always static, in
the sense that all arguments (or their contents) are known
before-hand. What is sometimes called dynamics in com-
putational argumentation refers to situations of dynamically
evolving argumentation scenarios. Many such forms are stud-
ied in the literature [Doutre and Mailly, 2018].

We contributed to the field of dynamics in computational
argumentation by advancing understanding of various forms
of dynamic reasoning. One fundamental dynamic operation
is called enforcement [Baumann et al., 2021], which aims to
find arguments to expand (or remove) in a current situation
such that a desired argument can be found acceptable. That
is, enforcement aims to “enforce” acceptance of a queried ar-
gument, even though the current situation does not warrant
acceptance. For instance, in Figure 3, the AF on the left does
not include argument d in the grounded extension, which is
among the most cautious semantics of AFs. Here unattacked
arguments are acceptable, as well as all arguments iteratively
defended by the unattacked arguments. By expanding with
argument e (right in the figure), an unattacked argument de-
fends a, and, in turn, d is defended. The enforcement problem
can be phrased as an optimization problem: the changes (e.g.,
additions of arguments) may be required to be minimal. An
application is then which arguments to pose in a dialogue in
order to advance acceptance of certain arguments.

We showed complexity in several settings of enforcement

of arguments in abstract and structured argumentation [Wall-
ner et al., 2017] and developed algorithms for finding en-
forcements. The optimization nature of enforcement in par-
ticular suggests to use solvers for NP hard problems in-
cluding optimization, such as Maximum SAT (MaxSAT)
solvers [Bacchus et al., 2021] and ASP solvers. Complexity
of enforcement on AFs (usually) inherits complexity of static
reasoning, as one has to first check whether an argument is
already accepted without modifications. Nevertheless, this
form of dynamic reasoning oftentimes leads to higher com-
plexity, e.g., the poly-time grounded semantics leads to NP-
complete problems in the enforcement setting.

Approaches that include learning in computational argu-
mentation recently gained more and more traction in the re-
search community [Proietti and Toni, 2023]. We considered
the AF Synthesis problem [Niskanen et al., 2019] that pro-
vides an automated way of constructing attacks between ar-
guments. The AF Synthesis problem can be seen as an in-
verse task than “normal” reasoning: based on semantical ex-
amples what are, e.g., admissible sets, which attacks have to
be present? In the AF Synthesis problem, the task is to syn-
thesize, learn, or generate an AF based on such semantical
examples. We allow for noisy and incomplete examples, in
the sense that relative trust of examples can be specified and
the resulting AF should be of optimal cost (violation of an ex-
ample incurs its weight as a cost). The AF Synthesis problem
is connected to so-called realizability in formal argumenta-
tion [Dunne et al., 2015] which studies existence questions
like “does an AF exist having certain semantical properties?”
Similar to enforcement, MaxSAT solvers can be utilized to
solve the AF Synthesis problem.

In the application by the Dutch National Police [Odekerken
et al., 2020] a different kind of dynamic scenario is impor-
tant: stability of an argumentative decision. For instance, if
the current state of argumentation draws a certain conclusion,
can the conclusion change if further arguments are added?
That is, can one expand with further arguments and enforce
another outcome? In case the answer is negative, the current
outcome is seen as stable. We supported the research on the
computational problem of stability, which is phrased in the
ASPIC+ framework [Odekerken et al., 2023]. Here, as well,
as for static forms of reasoning, compact representations were
key to both complexity analysis and algorithms, with the cur-
rent state of the art relying on ASP solving.

In case a current setting is not stable, i.e., a different out-
come is still possible, the computational problem of relevance
aims to find open issues that can lead to a stable conclusion.
That is, which propositions are relevant in changing an out-
come in the sense that after their addition the result is stable.
For the grounded semantics, stability and relevance raise the
computational complexity by one and two steps, respectively,
compared to static forms of reasoning.

Summarizing, computational approaches to dynamic forms
of argumentation oftentimes are more involved than more
static forms of reasoning. Tasks like enforcement can be seen
as basic operations that are part of more complex settings,
such as in incomplete scenarios. More advanced language
features, e.g., using preferential information, requires more
research in the dynamic setting, as well, in our opinion.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Early Career Track

8585



a

b

c d e

(a)

a, b, c
â
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Figure 4: An example AF (a), a faithful clustered AF (b), and a clustered AF with a spurious admissible set (c).

4 Supporting Argumentative Explainability
Computational argumentation lends itself naturally to forms
supporting explainability, e.g., an admissible set of arguments
contains (in the structure of arguments) a clear indication
why a certain conclusion can be (argumentatively) defended.
More generally, argumentation in AI is seen as a promising
approach to explainability in AI (XAI) [Cyras et al., 2021;
Vassiliades et al., 2021].

Nevertheless, arguments, while individually direct to in-
terpret, may face barriers, nevertheless. For instance, as
briefly hinted above, the number of arguments may be high
(e.g., exponential-sized w.r.t. a given rule-base), the argu-
ments themselves might be complex derivations, and argu-
mentation semantics might not always give clear indications
of a result. For instance, checking whether an admissible
set (in an AF) exists containing a queried argument is NP-
complete. Thus, checking if no such set exists is coNP-
complete, a complexity class whose witnesses for being a
positive result evades polynomial-size, under certain com-
plexity assumptions. Thus, a witness for an argument being
in no admissible set is not expected to be small in general.

We investigated how to cope with high number of argu-
ments, approaches to support “no” answers, and supporting
explainability in general.

Strongly accepting or rejecting sub frameworks F ′, of a
given AF F , are parts of the AF such that any AF “in-
between” F and F ′ has the same outcome [Saribatur et al.,
2020; Ulbricht and Wallner, 2021]. Say, there is no admis-
sible set containing a queried argument in AF F , then a sub
framework F ′ of F is strongly rejecting the same argument
(under the same semantics) if each F ′′ which contains all
parts of F ′ and may expand up to F finds the same answer.
In this way, strongly accepting or rejecting sub frameworks
can find small parts of the given framework that suffice to
draw a certain conclusion. This behavior is connected to both
stability (see above) and incomplete AFs [Baumeister et al.,
2018], with a main difference is that with strongly accepting
or rejecting sub frameworks an aim is to find small (minimal,
optimal) sub frameworks. Complexity of reasoning under
these strongly accepting or rejecting sub frameworks, both in
abstract and structured argumentation [Ulbricht and Wallner,
2022], is more involved than static forms of reasoning.

While strongly accepting or rejecting sub frameworks may
focus reasoning on a part of a given AF (or structured rule
base), they are restricted to parts of the given input. In con-
trast, forms of abstraction, as investigated, e.g., in model
checking [Clarke et al., 2003], allow for abstracting parts
of the input, while aiming to being faithful to original ar-

gumentative outcomes. We considered forms of existential
abstraction both on AFs [Saribatur and Wallner, 2021] and in
ABA [Apostolakis et al., 2024], by clustering parts of the in-
put. For instance, in Figure 4, in a given AF (a) the left-most
three arguments are clustered into one “clustered argument”
(Figure 4(b)). By adapting classical argumentation semantics
to the clustered setting, in the AF in the middle, the same ar-
gumentative conclusions can be drawn, i.e., this clustering is
faithful, while the clustering on the right leads to an incorrect
conclusion. The latter is deemed spurious, due to faulty rea-
soning introduced in the abstraction. Abstraction is here “ex-
istential” in the sense that attacks in the clustering are present
if there exists an attack in the AF from or to the clusters.

An advantage of such clusterings is that they can signif-
icantly reduce the set of arguments, but instead of removal,
arguments are abstracted into clusters. For instance, in the
faithful clustering (Figure 4(b)) argument e can be defended
against the attack originating form d, by using the cluster.
But which argument is responsible for defense was abstracted
away. Abstraction via clustering can also be used inter-
actively: a user may choose more or less abstraction (i.e.,
“zooming” in or out).

While many research works are strengthening the poten-
tial, we believe that more research is needed to fully real-
ize the explainability potential of computational argumenta-
tion. In addition to the aforementioned form of abstraction,
general simplification procedures are, we believe, useful for
users. For instance, users may interactively gain insights into
why certain (argumentative) conclusions hold. For this, users
might need simplifications in order to digest main compo-
nents of argumentative reasoning.

5 Conclusions
We gave an overview of the author’s contributions to compu-
tational argumentation, going from foundational complexity
questions to algorithmic solutions. Static forms, in which the
current state does not change, and dynamic forms, ranging
from finding usable arguments to learning arguments, were
studied.

As summarized in the above sections, future research is,
in our opinion, needed to further potential of computation
argumentation. Among the promising directions are sup-
port for more advanced language features in the formal lan-
guages, both conceptually and from an algorithmic perspec-
tive. Moreover, support for explainability, in its many forms,
is a useful research direction. We think in particular inter-
actions with users is a direction with potential for advancing
applications.
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