Proceedings Abstracts of the Twenty-Fourth International Joint Conference on Artificial Intelligence

Learning to Interpret Natural Language Commands through Human-Robot Dialog / 1923
Jesse Thomason, Shiqi Zhang, Raymond J Mooney, Peter Stone

Intelligent robots frequently need to understand requests from naive users through natural language. Previous approaches either cannot account for language variation, e.g., keyword search, or require gathering large annotated corpora, which can be expensive and cannot adapt to new variation. We introduce a dialog agent for mobile robots that understands human instructions through semantic parsing, actively resolves ambiguities using a dialog manager, and incrementally learns from human-robot conversations by inducing training data from user paraphrases. Our dialog agent is implemented and tested both on a web interface with hundreds of users via Mechanical Turk and on a mobile robot over several days, tasked with understanding navigation and delivery requests through natural language in an office environment. In both contexts, We observe significant improvements in user satisfaction after learning from conversations.