Proceedings Abstracts of the Twenty-Fourth International Joint Conference on Artificial Intelligence

ALLEGRO: Belief-Based Programming in Stochastic Dynamical Domains / 2762
Vaishak Belle, Hector Levesque

High-level programming languages are an influential control paradigm for building agents that are purposeful in an incompletely known world. GOLOG, for example, allows us to write programs, with loops, whose constructs refer to an explicit world model axiomatized in the expressive language of the situation calculus. Over the years, GOLOG has been extended to deal with many other features, the claim being that these would be useful in robotic applications. Unfortunately, when robots are actually deployed, effectors and sensors are noisy, typically characterized over continuous probability distributions, none of which is supported in GOLOG, its dialects or its cousins. This paper presents ALLEGRO, a belief-based programming language for stochastic domains, that refashions GOLOG to allow for discrete and continuous initial uncertainty and noise. It is fully implemented and experiments demonstrate that ALLEGRO could be the basis for bridging high-level programming and probabilistic robotics technologies in a general way.