Proceedings Abstracts of the Twenty-Fourth International Joint Conference on Artificial Intelligence

A Direct Boosting Approach for Semi-supervised Classification / 4033
Shaodan Zhai, Tian Xia, Zhongliang Li, Shaojun Wang

We introduce a semi-supervised boosting approach (SSDBoost), which directly minimizes the classification errors and maximizes the margins on both labeled and unlabeled samples, without resorting to any upper bounds or approximations. A two-step algorithm based on coordinate descent/ascent is proposed to implement SSDBoost. Experiments on a number of UCI datasets and synthetic data show that SSDBoost gives competitive or superior results over the state-of-the-art supervised and semi-supervised boosting algorithms in the cases that the labeled data is limited, and it is very robust in noisy cases.