Proceedings Abstracts of the Twenty-Fourth International Joint Conference on Artificial Intelligence

Towards More Practical Reinforcement Learning / 4381
Travis Mandel

Reinforcement Learning is beginning to be applied outside traditional domains such as robotics, and into human-centric domains such as healthcare and education. In these domains, two problems are critical to address: We must be able to evaluate algorithms with a collection of prior data if one is available, and we must devise algorithms that carefully trade off exploration and exploitation in such a way that they are guaranteed to converge to optimal behavior quickly, while retaining very good performance with limited data. In this thesis, I examine these two problems, with an eye towards applications to educational games.