Abstract
POISketch: Semantic Place Labeling over User Activity Streams / 2697
Dingqi Yang, Bin Li, Philippe Cudré-Mauroux
Capturing place semantics is critical for enabling location-based applications. Techniques for assigning semantic labels (e.g., "bar" or "office") to unlabeled places mainly resort to mining user activity logs by exploiting visiting patterns. However, existing approaches focus on inferring place labels with a static user activity dataset, and ignore the visiting pattern dynamics in user activity streams, leading to the rapid decrease of labeling accuracy over time. In this paper, we tackle the problem of semantic place labeling over user activity streams. We formulate this problem as a classification problem by characterizing each place through its fine-grained visiting patterns, which encode the visiting frequency of each user in each typical time slot. However, with the incoming activities of new users in data streams, such fine-grained visiting patterns constantly grow, leading to a continuously expanding feature space. To solve this issue, we propose an updatable sketching technique that creates and incrementally updates a set of compact and fixed-size sketches to approximate the similarity between fine-grained visiting patterns of ever-growing size. We further consider the discriminative weights of user activities in place labeling, and seamlessly incorporate them into our sketching method. Our empirical evaluation on real-world datasets demonstrates the validity of our approach and shows that sketches can be efficiently and effectively used to infer place labels over user activity streams.