Proceedings Abstracts of the Twenty-Fifth International Joint Conference on Artificial Intelligence

KBQA: An Online Template Based Question Answering System over Freebase / 4240
Wanyun Cui, Yanghua Xiao, Wei Wang

Question answering (QA) has become a popular way for humans to access billion-scale knowledge bases. QA systems over knowledge bases produce accurate and concise answers. The key of QA over knowledge bases is to map the question to a certain substructure in the knowledge base. To do this, KBQA (Question Answering over Knowledge Bases) uses a new kind of question representation: templates, learned from a million scale QA corpora. For example, for questions about a city's population, KBQA learns templates such as What's the population of $city?, How many people are there in $city?. It learns overall 1171303 templates for 4690 relations. Based on these templates, KBQA effectively and efficiently supports binary factoid questions or complex questions.