On Subset Selection with General Cost Constraints
On Subset Selection with General Cost Constraints
Chao Qian, Jing-Cheng Shi, Yang Yu, Ke Tang
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence
Main track. Pages 2613-2619.
https://doi.org/10.24963/ijcai.2017/364
This paper considers the subset selection problem with a monotone objective function and a monotone cost constraint, which relaxes the submodular property of previous studies. We first show that the approximation ratio of the generalized greedy algorithm is $\frac{\alpha}{2}(1 \textendash \frac{1}{e^{\alpha}})$ (where $\alpha$ is the submodularity ratio); and then propose POMC, an anytime randomized iterative approach that can utilize more time to find better solutions than the generalized greedy algorithm. We show that POMC can obtain the same general approximation guarantee as the generalized greedy algorithm, but can achieve better solutions in cases and applications.
Keywords:
Machine Learning: Machine Learning
Combinatorial & Heuristic Search: Heuristic Search
Combinatorial & Heuristic Search: Combinatorial search/optimisation