Hi-Fi: Hierarchical Feature Integration for Skeleton Detection

Hi-Fi: Hierarchical Feature Integration for Skeleton Detection

Kai Zhao, Wei Shen, Shanghua Gao, Dandan Li, Ming-Ming Cheng

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence
Main track. Pages 1191-1197. https://doi.org/10.24963/ijcai.2018/166

In natural images, the scales (thickness) of object skeletons may dramatically vary among objects and object parts. Thus, robust skeleton detection requires powerful multi-scale feature integration ability. To address this issue, we present a new convolutional neural network (CNN) architecture by introducing a novel hierarchical feature integration mechanism, named Hi-Fi, to address the object skeleton detection problem. The proposed CNN-based approach intrinsically captures high-level semantics from deeper layers, as well as low-level details from shallower layers. By hierarchically integrating different CNN feature levels with bidirectional guidance, our approach (1) enables mutual refinement across features of different levels, and (2) possesses the strong ability to capture both rich object context and high-resolution details. Experimental results show that our method significantly outperforms the state-of-the-art methods in terms of effectively fusing features from very different scales, as evidenced by a considerable performance improvement on several benchmarks.
Keywords:
Computer Vision: Recognition: Detection, Categorization, Indexing, Matching, Retrieval, Semantic Interpretation
Computer Vision: Computer Vision