Document-level Relation Extraction as Semantic Segmentation
Document-level Relation Extraction as Semantic Segmentation
Ningyu Zhang, Xiang Chen, Xin Xie, Shumin Deng, Chuanqi Tan, Mosha Chen, Fei Huang, Luo Si, Huajun Chen
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence
Main Track. Pages 3999-4006.
https://doi.org/10.24963/ijcai.2021/551
Document-level relation extraction aims to extract relations among multiple entity pairs from a document. Previously proposed graph-based or transformer-based models utilize the entities independently, regardless of global information among relational triples. This paper approaches the problem by predicting an entity-level relation matrix to capture local and global information, parallel to the semantic segmentation task in computer vision. Herein, we propose a Document U-shaped Network for document-level relation extraction. Specifically, we leverage an encoder module to capture the context information of entities and a U-shaped segmentation module over the image-style feature map to capture global interdependency among triples. Experimental results show that our approach can obtain state-of-the-art performance on three benchmark datasets DocRED, CDR, and GDA.
Keywords:
Natural Language Processing: Information Extraction
Natural Language Processing: Knowledge Extraction