Speech Recognition Using RFID Tattoos (Extended Abstract)

Speech Recognition Using RFID Tattoos (Extended Abstract)

Jingxian Wang, Chengfeng Pan, Haojian Jin, Vaibhav Singh, Yash Jain, Jason I. Hong, Carmel Majidi, Swarun Kumar

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence
Sister Conferences Best Papers. Pages 4849-4853. https://doi.org/10.24963/ijcai.2021/664

This paper presents a radio-frequency (RF) based assistive technology for voice impairments (i.e., dysphonia), which occurs in an estimated 1% of the global population. We specifically focus on acquired voice disorders where users continue to be able to make facial and lip gestures associated with speech. Despite the rich literature on assistive technologies in this space, there remains a gap for a solution that neither requires external infrastructure in the environment, battery-powered sensors on skin or body-worn manual input devices. We present RFTattoo, which to our knowledge is the first wireless speech recognition system for voice impairments using batteryless and flexible RFID tattoos. We design specialized wafer-thin tattoos attached around the user's face and easily hidden by makeup. We build models that process signal variations from these tattoos to a portable RFID reader to recognize various facial gestures corresponding to distinct classes of sounds. We then develop natural language processing models that infer meaningful words and sentences based on the observed series of gestures. A detailed user study with 10 users reveals 86% accuracy in reconstructing the top-100 words in the English language, even without the users making any sounds.
Keywords:
Multidisciplinary Topics and Applications: Ubiquitous Computing Systems
Humans and AI: Human-Computer Interaction