Text Transformations in Contrastive Self-Supervised Learning: A Review

Text Transformations in Contrastive Self-Supervised Learning: A Review

Amrita Bhattacharjee, Mansooreh Karami, Huan Liu

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence
Survey Track. Pages 5394-5401. https://doi.org/10.24963/ijcai.2022/757

Contrastive self-supervised learning has become a prominent technique in representation learning. The main step in these methods is to contrast semantically similar and dissimilar pairs of samples. However, in the domain of Natural Language Processing (NLP), the augmentation methods used in creating similar pairs with regard to contrastive learning (CL) assumptions are challenging. This is because, even simply modifying a word in the input might change the semantic meaning of the sentence, and hence, would violate the distributional hypothesis. In this review paper, we formalize the contrastive learning framework, emphasize the considerations that need to be addressed in the data transformation step, and review the state-of-the-art methods and evaluations for contrastive representation learning in NLP. Finally, we describe some challenges and potential directions for learning better text representations using contrastive methods.
Keywords:
Survey Track: -
Survey Track: Natural Language Processing
Survey Track: Machine Learning
Survey Track: Data Mining