The Shapley Value in Machine Learning
The Shapley Value in Machine Learning
Benedek Rozemberczki, Lauren Watson, Péter Bayer, Hao-Tsung Yang, Olivér Kiss, Sebastian Nilsson, Rik Sarkar
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence
Survey Track. Pages 5572-5579.
https://doi.org/10.24963/ijcai.2022/778
Over the last few years, the Shapley value, a solution concept from cooperative game theory, has found numerous applications in machine learning. In this paper, we first discuss fundamental concepts of cooperative game theory and axiomatic properties of the Shapley value. Then we give an overview of the most important applications of the Shapley value in machine learning: feature selection, explainability, multi-agent reinforcement learning, ensemble pruning, and data valuation. We examine the most crucial limitations of the Shapley value and point out directions for future research.
Keywords:
Survey Track: -
Survey Track: Data Mining
Survey Track: Machine Learning
Survey Track: Constraint Satisfaction and Optimization