Scalable Coupling of Deep Learning with Logical Reasoning

Scalable Coupling of Deep Learning with Logical Reasoning

Marianne Defresne, Sophie Barbe, Thomas Schiex

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence
Main Track. Pages 3615-3623. https://doi.org/10.24963/ijcai.2023/402

In the ongoing quest for hybridizing discrete reasoning with neural nets, there is an increasing interest in neural architectures that can learn how to solve discrete reasoning or optimization problems from natural inputs. In this paper, we introduce a scalable neural architecture and loss function dedicated to learning the constraints and criteria of NP-hard reasoning problems expressed as discrete Graphical Models. We empirically show our loss function is able to efficiently learn how to solve NP-hard reasoning problems from natural inputs as the symbolic, visual or many-solutions Sudoku problems as well as the energy optimization formulation of the protein design problem, providing data efficiency, interpretability, and a posteriori control over predictions.
Keywords:
Machine Learning: ML: Neuro-symbolic methods
Constraint Satisfaction and Optimization: CSO: Constraint learning and acquisition
Multidisciplinary Topics and Applications: MDA: Bioinformatics