A Reduction-Based Algorithm for the Clique Interdiction Problem
A Reduction-Based Algorithm for the Clique Interdiction Problem
Chenghao Zhu, Yi Zhou, Haoyu Jiang
Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence
Main Track. Pages 9022-9030.
https://doi.org/10.24963/ijcai.2025/1003
The Clique Interdiction Problem (CIP) aims to minimize the size of the largest clique in a given graph by removing a given number of vertices.
The CIP models a special Stackelberg game and has important applications in fields such as pandemic control and terrorist identification.
However, the CIP is a bilevel graph optimization problem, making it very challenging to solve. Recently, data reduction techniques have been successfully applied in many (single-level) graph optimization problems like vertex cover.
Motivated by this, we investigate a set of novel reduction rules and design a reduction-based algorithm, RECIP, for practically solving the CIP.
RECIP enjoys an effective preprocessing procedure that systematically reduces the input graph, making the problem much easier to solve.
Extensive experiments on 124 large real-world networks demonstrate the superior performance of RECIP and validate the effectiveness of the proposed reduction rules.
Keywords:
Search: S: Combinatorial search and optimisation
Search: S: Heuristic search
Search: S: Mixed discrete/continuous search
