Detect, Understand, Act: A Neuro-Symbolic Hierarchical Reinforcement Learning Framework (Extended Abstract)
Detect, Understand, Act: A Neuro-Symbolic Hierarchical Reinforcement Learning Framework (Extended Abstract)
Ludovico Mitchener, David Tuckey, Matthew Crosby, Alessandra Russo
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence
Sister Conferences Best Papers. Pages 5314-5318.
https://doi.org/10.24963/ijcai.2022/742
We introduce Detect, Understand, Act (DUA), a neuro-symbolic reinforcement learning framework. The Detect component is composed of a traditional computer vision object detector and tracker. The Act component houses a set of options, high-level actions enacted by pre-trained deep reinforcement learning (DRL) policies. The Understand component provides a novel answer set programming (ASP) paradigm for effectively learning symbolic meta-policies over options using inductive logic programming (ILP). We evaluate our framework on the Animal-AI (AAI) competition testbed, a set of physical cognitive reasoning problems. Given a set of pre-trained DRL policies, DUA requires only a few examples to learn a meta-policy that allows it to improve the state-of-the-art on multiple of the most challenging categories from the testbed. DUA constitutes the first holistic hybrid integration of computer vision, ILP and DRL applied to an AAI-like environment and sets the foundations for further use of ILP in complex DRL challenges.
Keywords:
Artificial Intelligence: General